参考loj2265中关于杨表的相关知识

先来考虑$m\mid n$的情况:

记$t=\frac{n}{m}$,将序列划分为$[1,m],[m+1,2m],...,[(t-1)m+1,tm]$这$t$段,每一段都至少有$k$个物品且可以同时取到,因此取到最小值时必然都恰为$k$个

构造一个$t$列且每列有$k$个格子的杨表,其中第$i$列记录第$t-i+1$段中的$k$个物品相对于该段左端点的距离,不难发现此时合法即要求其为半标准杨表,也即求$g_{m,\{t,t,...,t\}}$(共$k$个$t$)

根据性质3.3,即有$g_{m,\{t,t,...,t\}}=\prod_{i=1}^{k}\prod_{j=1}^{t}\frac{m+j-i}{(k-i)+(t-j)+1}$

先枚举$i$,并分别考虑后者的分子和分母,不难发现即$\frac{(m-i+t)!(k-i)!}{(m-i)!(k-i+t)!}$

将上下同时约掉一个$t!$,即可预处理阶乘及逆元并$o(m\log P)$计算该式

再来考虑$m\not\mid n$的情况:

令$t=\lfloor\frac{n}{m}\rfloor,p=n\ mod\ m$,对其分类讨论:

1.若$p\le m-k$,即需要保证$t$段中每一段的前$p$个位置不能放物品(否则不难得到最后这$p$个位置也要放物品,答案不足够小),也即将$m$减去$p$并令$n=tm$后的问题

2.若$p>m-k$,即需要保证$t$段中每一段的最后$m-p$个位置必须放物品(否则不难得到最后这$p$个位置要放多于$p-(m-k)$个物品,答案也不足够小)

将最后这$p$个位置补至$m$个,由于补充的位置必须填,因此不影响方案数

换言之,即将$k$减去$m-p$、$m$变为$p$并令$n=(t+1)m$后的问题

最终,时间复杂度即为$o(m \log P)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 1000000007
4 #define ll long long
5 int t,n,m,k,ans;
6 int qpow(int n,int m){
7 int s=n,ans=1;
8 while (m){
9 if (m&1)ans=(ll)ans*s%mod;
10 s=(ll)s*s%mod;
11 m>>=1;
12 }
13 return ans;
14 }
15 int main(){
16 scanf("%d",&t);
17 while (t--){
18 scanf("%d%d%d",&n,&m,&k);
19 if (n%m){
20 int t=n/m,p=n%m;
21 if (p<=m-k)m-=p,n=t*m;
22 else k-=m-p,m=p,n=(t+1)*m;
23 }
24 ans=1;
25 int t=n/m;
26 for(int i=1;i<=k;i++){
27 int s=1;
28 for(int j=t+1;j<=m-i+t;j++)s=(ll)s*j%mod;
29 for(int j=1;j<=k-i;j++)s=(ll)s*j%mod;
30 for(int j=1;j<=m-i;j++)s=(ll)s*qpow(j,mod-2)%mod;
31 for(int j=t+1;j<=k-i+t;j++)s=(ll)s*qpow(j,mod-2)%mod;
32 ans=(ll)ans*s%mod;
33 }
34 printf("%d\n",ans);
35 }
36 }

[ccBB]Billboards的更多相关文章

  1. utf-8 汉字对照表

    之前从redis中取出一些数据,utf8 16进制编码,想转成字符,没有找到现成的转化工具,先用这个表直接查找对照吧. UTF8编码表大全Code code# Code (coded in UTF-8 ...

  2. Bubble Cup 8 finals E. Spectator Riots (575E)

    题意: 一个长宽是100000单位的球场上有很多暴动的观众,每个观众都有一个速度v, 在一秒内,观众会等概率地移动到与原位置的曼哈顿距离<=v的地方(不会移动到界外). 你需要选取三个位置,这三 ...

  3. JS base64 加密和 后台 base64解密(防止中文乱码)

    直接上代码 1,js(2个文件,网上找的)  不要觉的长,直接复制下来就OK //UnicodeAnsi.js文件 //把Unicode转成Ansi和把Ansi转换成Unicode function ...

  4. 转---B/S结构JavaEE WebApp的全自动安装包制作心得

    JavaEE的Web应用程序如今已大行其道,但其安装.配置.部署却一直繁琐无比,客观上阻碍了Web应用程序更大规模的推广和应用.因此,开发方制作一个集JDK.Web中间件.开源数据库的全自动安装程序很 ...

  5. z-fighting在unity中的解决方式

    如果在画面中,发现有画面闪烁的问题.那么大多数情况下是z-fighting引起的, 解决方案: 1, 在每个场景中,找到那个MainCamera,然后在Inspector上,找到MainCamera的 ...

  6. WindowsForm如何实现类似微软project软件的甘特图?

    在管理软件研发过程中,特别是涉及项目管理或者生产计划方面,都需要一款类似微软project的控件对项目下的分解任务进行图形展示(甘特图).下面介绍一下在WindowsForm下如何实现类似微软proj ...

  7. 一款开源且功能强大的C#甘特图控件.NET Winforms Gantt Chart Control

    甘特图在项目管理中非常重要,甘特图的思想比较简单,即以图示的方式通过活动列表和时间刻度形象地表示出任何特定项目的活动顺序与持续时间.它直观地表明任务计划在什么时候进行,及实际进展与计划要求的对比.管理 ...

  8. 一次更愚蠢的NOIP模拟赛

    都可以从COGS上找到 纵横字谜(krizaljka) 时间限制: 1 Sec  内存限制: 32 MB 题目描述 给出两个单词,找到第一个相同的字母,然后第一个单词横数输出,第二个竖着输出形成十字形 ...

  9. ShadowGun Demo学习(非技术向)

    主要针对拿来主义,并对一些使用范围广的shader进行研究.虽然是4,5年前的demo,但还是有学习价值的 1.GodRays MADFINGER/Transparent/GodRays 传统的上帝之 ...

随机推荐

  1. Miller-Rabin and Pollard-Rho

    实话实说,我自学(肝)了两天才学会这两个随机算法 记录: Miller-Rabin 她是一个素数判定的算法. 首先需要知道费马小定理 \[a^{p-1}\equiv1\pmod{p}\quad p\i ...

  2. 浅谈一手MYSQL设计规范

    前言: 最近牵头搞一个机场管理集团的项目,发现团队中的成员对于库表设计,有非常多的盲区.所以决定写一篇文章,总结一下最近工作的几年中,常用的一些数据库设计规范和思路. 目的 MySQL数据库与 Ora ...

  3. 前段之BOM ----DOM

    一.介绍 BOM(Browser Object Model)是指浏览器对象模型,它使 JavaScript 有能力与浏览器进行"对话". DOM (Document Object ...

  4. bzoj2242,洛谷2485----SDOI2011计算器(exgcd,qsm,bsgs模板)

    就是一道模板题! 这里再强调一下 BSGS 考虑方程\(a^x = b \pmod p\) 已知a,b,p\((2 \le p\le 10^9)\),其中p为质数,求x的最小正整数解 解法: 注意到如 ...

  5. Python 实现断网自动重连

    为了实现 断网了,自动连接网络原理:每隔一段时间ping一下百度,判断网络状态,没有联网的话,就模仿浏览器发一条Post给服务器import urllibimport hashlibimport su ...

  6. RA-28000 账号被锁定的解决办法

    ORA-28000 账号被锁定的解决办法 错误场景:当使用sqlplus进行登录时报错:ORA-28000 账号被锁定.错误原因:由于oracle 11g 在默认在default概要文件中设置了密码最 ...

  7. Django开发个人博客入门学习经验贴

    [写在前面] 入门学习搭建个人博客系统首先还是参考大佬们的经验,记得刚入手Django的时候,一篇博客大佬说过一句话,做技术的不要一开始就扎头于细节中,先把握整体框架,了解这个对象之后再去了解细节,进 ...

  8. silky微服务快速开始

    项目介绍 Silky框架旨在帮助开发者在.net平台下,通过简单代码和配置快速构建一个微服务开发框架. Silky 通过 .net core的主机来托管微服务应用.通过 Asp.Net Core 提供 ...

  9. Redis使用过程中有哪些注意事项?看看BAT这类的公司是正确使用Redis的!!

    Redis使用过程中要注意的事项 Redis使用起来很简单,但是在实际应用过程中,一定会碰到一些比较麻烦的问题,常见的问题有 redis和数据库数据的一致性 缓存雪崩 缓存穿透 热点数据发现 下面逐一 ...

  10. 4.19——数组双指针——26. 删除有序数组中的重复项 & 27. 删除有序数组中的重复项II & 80. 删除有序数组中的重复项 II

    第一次做到数组双指针的题目是80: 因为python的List是可以用以下代码来删除元素的: del List[index] 所以当时的我直接用了暴力删除第三个重复元素的做法,大概代码如下: n = ...