枚举最终所有牌的大小$i$,对于最终所有牌大小都为$i$的情况,令其贡献为步数,否则令其贡献为0,记$F$为期望贡献(即所有情况概率*贡献之和),答案即为$\sum_{i=1}^{m}F$

显然,$F$仅取决于牌的数量,定义$F_{i}$表示恰有$i$张牌的期望贡献,那么答案即为$\sum_{i=1}^{m}F_{a_{i}}$

在求$F_{i}$的转移之前,先定义$P_{i}$为贡献为步数的情况的概率,关于$P_{i}$的转移,不难得到
$$
\begin{cases}P_{0}=0,P_{n}=1\\P_{i}=\frac{P_{i-1}+P_{i+1}}{2}&(1\le i<n)\end{cases}
$$
这是一个经典的问题,通项为$P_{i}=\frac{i}{n}$

考虑$F_{i}$的转移,即为
$$
\begin{cases}F_{0}=F_{n}=0\\F_{i}=\frac{i(n-i)}{n(n-1)}(F_{i-1}+F_{i+1}+\frac{2i}{n})+(1-\frac{2i(n-i)}{n(n-1)})(F_{i}+\frac{i}{n})&(1\le i<n)\end{cases}
$$
(注意每一次步数并不是+1,而是加上目标状态的$P_{i}$,因为只有$P_{i}$的概率这步有贡献)

将其化简,即为
$$
\begin{cases}F_{0}=F_{n}=0\\F_{i+1}=2F_{i}-F_{i-1}-\frac{n-1}{n-i}&(1\le i<n)\end{cases}
$$
将其差分,即令$G_{i}=F_{i+1}-F_{i}$,那么
$$
\begin{cases}G_{0}=F_{1},\sum_{i=0}^{n-1}G_{i}=0\\G_{i}=G_{i-1}-\frac{n-1}{n-i}&(1\le i<n)\end{cases}
$$
将第2个式子不断迭代,即可得$G_{i}=F_{1}-\sum_{j=1}^{i}\frac{n-1}{n-j}$,那么
$$
\sum_{i=0}^{n-1}G_{i}=nF_{1}-\sum_{i=0}^{n-1}\sum_{j=1}^{i}\frac{n-1}{n-j}=nF_{1}-\sum_{j=1}^{n-1}\frac{n-1}{n-j}(n-j)=nF_{1}-(n-1)^{2}=0
$$
解得$F_{1}=\frac{(n-1)^{2}}{n}$,进而可得
$$
F_{i}=\sum_{j=0}^{i-1}G_{j}=iF_{1}-\sum_{j=1}^{i-1}\frac{n-1}{n-j}(i-j)=\frac{i(n-1)^{2}}{n}-(i-1)(n-1)+(n-i)(n-1)\sum_{j=n-i+1}^{n-1}\frac{1}{j}
$$
(最后一个变化是将$i-j$变形为$(n-j)-(n-i)$,再根据分配律展开即可)

关于最后一项,令$H_{n}=\sum_{i=1}^{n}\frac{1}{i}$,即$H_{n}-H_{n-i}$,关于$H_{n}$为调和级数,用$H_{n}=\ln n+C$来模拟即可(较小范围预处理,$C$使用0.5772即可,当然还可以分块打表)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10000005
4 #define C 0.5772
5 #define ld long double
6 int n,m,x;
7 ld nn,ans,h[N];
8 ld H(int n){
9 if (n<N)return h[n];
10 return log(n)+C;
11 }
12 ld calc(int k){
13 return k*(nn-1)*(nn-1)/nn-(k-1)*(nn-1)+(nn-k)*(nn-1)*(H(n-1)-H(n-k));
14 }
15 int main(){
16 for(int i=1;i<N;i++)h[i]=h[i-1]+(ld)1/i;
17 scanf("%d%d",&n,&m);
18 nn=n;
19 for(int i=1;i<=m;i++){
20 scanf("%d",&x);
21 ans+=calc(x);
22 }
23 printf("%.7Lf",ans);
24 }

[loj6118]鬼牌的更多相关文章

  1. LOJ#6118 鬼牌

    \(\rm upd\):是我假了...这题没有爆精...大家要记得这道题是相对误差\(10^{-6}\)...感谢@foreverlasting的指正. 题是好题,可是标算爆精是怎么回事...要写的和 ...

  2. UOJ147 斗地主

    题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关 系根据牌的数码表示如下:3<4&l ...

  3. UOJ 151 斗地主“加强”版

    #151. [NOIP2015]斗地主“加强”版 统计 描述 提交 自定义测试 本题开放Hack 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54 ...

  4. FZU 2216 The Longest Straight(最长直道)

    Description 题目描述 ZB is playing a card game where the goal is to make straights. Each card in the dec ...

  5. Pandas python

    原文:  https://github.com/catalystfrank/Python4DataScience.CH   和大熊猫们(Pandas)一起游戏吧!   Pandas是Python的一个 ...

  6. Python数据分析入门之pandas基础总结

    Pandas--"大熊猫"基础 Series Series: pandas的长枪(数据表中的一列或一行,观测向量,一维数组...) Series1 = pd.Series(np.r ...

  7. 扑克牌(cards)

    扑克牌 思路 这题也是二分!! 我们二分有几套牌,然后再去检验是否符合,至于怎么想到的,不要问我,我也不知道 那么我们主要解决的就是check函数 我们将二分的套数和每种牌的数量进行比较,如果该种牌的 ...

  8. Codeforces 1392H - ZS Shuffles Cards(DP+打表找规律)

    Codeforces 题面传送门 & 洛谷题面传送门 真·两天前刚做过这场的 I 题,今天模拟赛就考了这场的 H 题,我怕不是预言带师 提供一种奇怪的做法,来自于同机房神仙们,该做法不需要 M ...

  9. Solution -「CF 1392H」ZS Shuffles Cards

    \(\mathcal{Description}\)   Link.   打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌.随机抽牌,若抽到数字,将数字加入集合 \(S ...

随机推荐

  1. 数据库InnoDB和MyISAMYSQL的区别

    1.nnoDB支持事务,MyISAM不支持,这一点是非常之重要.事务是一种高级的处理方式,如在一些列增删改中只要哪个出错还可以回滚还原,而MyISAM就不可以了. 2.MyISAM适合查询以及插入为主 ...

  2. 梦幻西游H5游戏超详细图文架设教程

    前言 想体验经典Q版西游霸服快乐吗?想体验满级VIP的尊贵吗?想体验一招秒杀的爽快吗?各种极品装备.翅膀.宠物通通给你,就在梦幻西游! 本文讲解梦幻西游H5游戏的架设教程,想研究H5游戏如何实现,体验 ...

  3. pycharm设置文件中显示模板内容

    pycharm中设置自己的文件模板  File>>Settings>>Editor>>File and Code Templates 选择文件类型或者输入文件类型 ...

  4. FastAPI 学习之路(十三)Cookie 参数,Header参数

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  5. Get Mingw-w64 via MSYS2

    Get Mingw-w64 via MSYS2 Get the latest version of Mingw-w64 via MSYS2, which provides up-to-date nat ...

  6. Boost Started on Unix Variants

  7. 小白自制Linux开发板 七. USB驱动配置

    本文章基于https://whycan.com/t_3087.htmlhttps://whycan.com/t_6021.html整理 F1c100s芯片支持USB的OTG模式,也就是可以通过更改Us ...

  8. 第六次Alpha Scrum Meeting

    本次会议为Alpha阶段第六次Scrum Meeting会议 会议概要 会议时间:2021年5月2日 会议地点:线上会议 会议时长:20min 会议内容简介:本次会议主要由每个人展示自己目前完成的工作 ...

  9. 对mongo文档的增删改操作

    在mongo db 中增加.删除.修改文档有好多方法,这里简单记录一下我所知道的一些方法. 前置条件: 1.创建study数据库  use study; 2.创建persons集合,当第一次向pers ...

  10. linux上docker形式部署GB28181服务wvp,zlmedia

    目录 1.bash方式从镜像创建docker 2.下载vim 3.修改run.sh bug如下 4.修改application.xml 5.运行一下sh run.sh 6.Vim config.ini ...