The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

Given any two nodes in a binary tree, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

Sample Input:

6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99
 

Sample Output:

LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

题意:

根据先序遍历和中序遍历的结果,构建一棵二叉树,然后,在这颗二叉树中查找两个结点的最近公共祖先节点。

思路:

题目可以分成两部分组成

1. 先根据前序和中序构建一棵二叉树。

  构建二叉树的时候采用递归的方式进行构建,根节点root在preorder中进行查找,再根据root在inorder中的位置确定左右子树中的节点个数。左子树的根节点就是其父节点root在preorder中的下标tag+1,右子树的根节点为tag + pos + 1,(pos为root在inorder中的下标)。递归跳出的条件是 start > end || tag >= inorder.size()。

2. 在在二叉树中查找两个结点的公共祖先节点。

  https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-tree/comments/

Code:

#include<iostream>
#include<vector>
#include<set> using namespace std; typedef struct Node* node; struct Node {
int val;
node left;
node right; Node() {
val = 0;
left = NULL;
right = NULL;
} Node(int v) {
val = v;
left = NULL;
right = NULL;
}
}; vector<int> inorder, preorder;
int tag = 0; node buildTree(int start, int end, int tag) {
if (start >= end || tag >= inorder.size()) return NULL;
int val = preorder[tag];
node root = new Node(val);
int lend, rstart, pos;
for (int i = 0; i < inorder.size(); ++i) {
if (inorder[i] == val) {
pos = i;
break;
}
}
lend = pos - 1;
rstart = pos + 1;
root->left = buildTree(start, lend, tag+1);
root->right = buildTree(rstart, end, tag+pos+1);
return root;
} node lowestCommonAncestor(node root, int n1, int n2) {
if (!root || root->val == n1 || root->val == n2) return root;
node left = lowestCommonAncestor(root->left, n1, n2);
node right = lowestCommonAncestor(root->right, n1, n2);
return !left ? right : !right ? left : root;
} int main() {
int m, n, t;
cin >> m >> n; set<int> s;
for (int i = 0; i < n; ++i) {
cin >> t;
inorder.push_back(t);
s.insert(t);
}
for (int i = 0; i < n; ++i) {
cin >> t;
preorder.push_back(t);
} node root = buildTree(0, n-1, 0); for (int i = 0; i < m; ++i) {
int n1, n2;
cin >> n1 >> n2;
if (s.find(n1) != s.end() && s.find(n2) != s.end()) {
node lca = lowestCommonAncestor(root, n1, n2);
int v = lca->val;
if (v == n1) {
cout << n1 << " is an ancestor of " << n2 << "." << endl;
} else if (v == n2) {
cout << n2 << " is an ancestor of " << n1 << "." << endl;
} else {
cout << "LCA of " << n1 << " and " << n2 << " is " << v << "." << endl;
}
} else if (s.find(n1) != s.end()) {
cout << "ERROR: " << n2 << " is not found." << endl;
} else if (s.find(n2) != s.end()) {
cout << "ERROR: " << n1 << " is not found." << endl;
} else {
cout << "ERROR: " << n1 << " and " << n2 << " are not found." << endl;
} } return 0;
}

最后还是有一组数据没有通过。


建树的时候一定要注意小标的问题。

 1 #include <bits/stdc++.h>
2
3 using namespace std;
4
5 typedef struct Node* node;
6
7 struct Node {
8 int val;
9 node left;
10 node right;
11 Node(int v) {
12 val = v;
13 left = NULL;
14 right = NULL;
15 }
16 };
17
18 vector<int> inOrder, preOrder;
19
20 node buildTree(int inl, int inr, int prel, int prer) {
21 // cout << prel << " " << prer << endl;
22 if (prel > prer || inl > inr) return NULL;
23 node root = new Node(preOrder[prel]);
24 int pos = 0;
25 for (int i = inl; i <= inr; ++i) {
26 if (inOrder[i] == preOrder[prel]) {
27 pos = i;
28 break;
29 }
30 }
31 int leftLen = pos - inl;
32 // cout << rightLen << " " << leftLen << endl;
33 root->left = buildTree(inl, pos - 1, prel + 1, prel + leftLen);
34 root->right = buildTree(pos + 1, inr, prel + leftLen + 1, prer);
35 return root;
36 }
37
38 node LCA(node root, int u, int v) {
39 if (!root || root->val == u || root->val == v) return root;
40 node left = LCA(root->left, u, v);
41 node right = LCA(root->right, u, v);
42 return !left ? right : !right ? left : root;
43 }
44
45 int main() {
46 int m, n;
47 cin >> m >> n;
48 inOrder.resize(n);
49 preOrder.resize(n);
50 for (int i = 0; i < n; ++i) cin >> inOrder[i];
51 for (int i = 0; i < n; ++i) cin >> preOrder[i];
52 set<int> visited(inOrder.begin(), inOrder.end());
53 node root = buildTree(0, n - 1, 0, n - 1);
54 int u, v;
55 for (int i = 0; i < m; ++i) {
56 cin >> u >> v;
57 if (visited.find(u) != visited.end() &&
58 visited.find(v) != visited.end()) {
59 node lca = LCA(root, u, v);
60 if (lca->val == u)
61 cout << u << " is an ancestor of " << v << "." << endl;
62 else if (lca->val == v)
63 cout << v << " is an ancestor of " << u << "." << endl;
64 else
65 cout << "LCA of " << u << " and " << v << " is " << lca->val
66 << "." << endl;
67 } else if (visited.find(u) != visited.end()) {
68 cout << "ERROR: " << v << " is not found." << endl;
69 } else if (visited.find(v) != visited.end()) {
70 cout << "ERROR: " << u << " is not found." << endl;
71 } else {
72 cout << "ERROR: " << u << " and " << v << " are not found." << endl;
73 }
74 }
75
76 return 0;
77 }

不用建树的代码:

 1 #include <iostream>
2 #include <vector>
3 #include <map>
4 using namespace std;
5 map<int, int> pos;
6 vector<int> in, pre;
7 void lca(int inl, int inr, int preRoot, int a, int b) {
8 if (inl > inr) return;
9 int inRoot = pos[pre[preRoot]], aIn = pos[a], bIn = pos[b];
10 if (aIn < inRoot && bIn < inRoot)
11 lca(inl, inRoot-1, preRoot+1, a, b);
12 else if ((aIn < inRoot && bIn > inRoot) || (aIn > inRoot && bIn < inRoot))
13 printf("LCA of %d and %d is %d.\n", a, b, in[inRoot]);
14 else if (aIn > inRoot && bIn > inRoot)
15 lca(inRoot+1, inr, preRoot+1+(inRoot-inl), a, b);
16 else if (aIn == inRoot)
17 printf("%d is an ancestor of %d.\n", a, b);
18 else if (bIn == inRoot)
19 printf("%d is an ancestor of %d.\n", b, a);
20 }
21 int main() {
22 int m, n, a, b;
23 scanf("%d %d", &m, &n);
24 in.resize(n + 1), pre.resize(n + 1);
25 for (int i = 1; i <= n; i++) {
26 scanf("%d", &in[i]);
27 pos[in[i]] = i;
28 }
29 for (int i = 1; i <= n; i++) scanf("%d", &pre[i]);
30 for (int i = 0; i < m; i++) {
31 scanf("%d %d", &a, &b);
32 if (pos[a] == 0 && pos[b] == 0)
33 printf("ERROR: %d and %d are not found.\n", a, b);
34 else if (pos[a] == 0 || pos[b] == 0)
35 printf("ERROR: %d is not found.\n", pos[a] == 0 ? a : b);
36 else
37 lca(1, n, 1, a, b);
38 }
39 return 0;
40 }

1151 LCA in a Binary Tree (30point(s))的更多相关文章

  1. PAT 1151 LCA in a Binary Tree[难][二叉树]

    1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  2. 【PAT 甲级】1151 LCA in a Binary Tree (30 分)

    题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...

  3. PAT 甲级 1151 LCA in a Binary Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430130011897856 The lowest common anc ...

  4. 1151 LCA in a Binary Tree(30 分)

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  5. PAT Advanced 1151 LCA in a Binary Tree (30) [树的遍历,LCA算法]

    题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...

  6. 1151 LCA in a Binary Tree

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  7. PAT甲级|1151 LCA in a Binary Tree 先序中序遍历建树 lca

    给定先序中序遍历的序列,可以确定一颗唯一的树 先序遍历第一个遍历到的是根,中序遍历确定左右子树 查结点a和结点b的最近公共祖先,简单lca思路: 1.如果a和b分别在当前根的左右子树,当前的根就是最近 ...

  8. PAT_A1151#LCA in a Binary Tree

    Source: PAT A1151 LCA in a Binary Tree (30 分) Description: The lowest common ancestor (LCA) of two n ...

  9. PAT-1151(LCA in a Binary Tree)+最近公共祖先+二叉树的中序遍历和前序遍历

    LCA in a Binary Tree PAT-1151 本题的困难在于如何在中序遍历和前序遍历已知的情况下找出两个结点的最近公共祖先. 可以利用据中序遍历和前序遍历构建树的思路,判断两个结点在根节 ...

随机推荐

  1. 使用gitlab构建基于docker的持续集成(三)

    使用gitlab构建基于docker的持续集成(三) gitlab docker aspnetcore 持续集成 构建发布思路: aspnetcore 下的dockerfile编写 发布docker- ...

  2. 日志文件迁移至OSS

    一台服务器在用阿里云ECS,因为穷,磁盘空间有限,服务器日志文件每天都在增长,需要定期清理释放磁盘空间,想到几种解决方案: 写任务定时备份到本地服务器 直接下载到本地用移动硬盘备份 备份到阿里云OSS ...

  3. JVM 中的StringTable

    是什么 字符串常量池是 JVM 中的一个重要结构,用于存储JVM运行时产生的字符串.在JDK7之前在方法区中,存储的是字符串常量.而字符串常量池在 JDK7 开始移入堆中,随之而来的是除了存储字符串常 ...

  4. RFC2544吞吐量测试详细步骤-MiniSMB-HurricaneII软件操作演示

    RFC2544吞吐量测试详细步骤-MiniSMB-HurricaneII软件操作演示 关键词:网络性能测试:RFC2544:吞吐量:吞吐率. RFC2544协议是RFC组织提出的用于评测网络互联设备( ...

  5. 一文吃透zabbix4.0的编译安装,最全最详细的安装。

    什么是zabbix? zabbix作为一款企业级,开源的,分布式的监控套件,解决了以往监控软件的短板,可以说是现在流行的监控解决方案之一. 监控系统的理想化模样 1.监控数据收集及可视化. 2.数据要 ...

  6. 02-Spring配置文件加载

    获取IOC容器 加载.解析xml文件,形成GenericBeanDefinition,供后续实例化剩下的所有 Bean 使用. obtainFreshBeanFactory() 获取IOC容器 pro ...

  7. Java 并发编程之 Condition 接口

    本文部分摘自<Java 并发编程的艺术> 概述 任意一个 Java 对象,都拥有一个监视器方法,主要包括 wait().wait(long timeout).notify() 以及 not ...

  8. springboot 配置文件application

    application.properties # ----------------------------------------# 核心属性# --------------------------- ...

  9. css行高

    1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...

  10. gtk编译之makefile的写法(之一)

    在学习c语言GUI编程时想必大家都会遇见这样一个问题买就是每次编译都要敲`pkg-config --cflags --libs gtk+-2.0`这个烦恼吧 这是我们可以编写一个makefile文件这 ...