1151 LCA in a Binary Tree (30point(s))
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
Given any two nodes in a binary tree, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A.
if the LCA is found and A
is the key. But if A
is one of U and V, print X is an ancestor of Y.
where X
is A
and Y
is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found.
or ERROR: V is not found.
or ERROR: U and V are not found.
.
Sample Input:
6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
题意:
根据先序遍历和中序遍历的结果,构建一棵二叉树,然后,在这颗二叉树中查找两个结点的最近公共祖先节点。
思路:
题目可以分成两部分组成
1. 先根据前序和中序构建一棵二叉树。
构建二叉树的时候采用递归的方式进行构建,根节点root在preorder中进行查找,再根据root在inorder中的位置确定左右子树中的节点个数。左子树的根节点就是其父节点root在preorder中的下标tag+1,右子树的根节点为tag + pos + 1,(pos为root在inorder中的下标)。递归跳出的条件是 start > end || tag >= inorder.size()。
2. 在在二叉树中查找两个结点的公共祖先节点。
https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-tree/comments/
Code:
#include<iostream>
#include<vector>
#include<set> using namespace std; typedef struct Node* node; struct Node {
int val;
node left;
node right; Node() {
val = 0;
left = NULL;
right = NULL;
} Node(int v) {
val = v;
left = NULL;
right = NULL;
}
}; vector<int> inorder, preorder;
int tag = 0; node buildTree(int start, int end, int tag) {
if (start >= end || tag >= inorder.size()) return NULL;
int val = preorder[tag];
node root = new Node(val);
int lend, rstart, pos;
for (int i = 0; i < inorder.size(); ++i) {
if (inorder[i] == val) {
pos = i;
break;
}
}
lend = pos - 1;
rstart = pos + 1;
root->left = buildTree(start, lend, tag+1);
root->right = buildTree(rstart, end, tag+pos+1);
return root;
} node lowestCommonAncestor(node root, int n1, int n2) {
if (!root || root->val == n1 || root->val == n2) return root;
node left = lowestCommonAncestor(root->left, n1, n2);
node right = lowestCommonAncestor(root->right, n1, n2);
return !left ? right : !right ? left : root;
} int main() {
int m, n, t;
cin >> m >> n; set<int> s;
for (int i = 0; i < n; ++i) {
cin >> t;
inorder.push_back(t);
s.insert(t);
}
for (int i = 0; i < n; ++i) {
cin >> t;
preorder.push_back(t);
} node root = buildTree(0, n-1, 0); for (int i = 0; i < m; ++i) {
int n1, n2;
cin >> n1 >> n2;
if (s.find(n1) != s.end() && s.find(n2) != s.end()) {
node lca = lowestCommonAncestor(root, n1, n2);
int v = lca->val;
if (v == n1) {
cout << n1 << " is an ancestor of " << n2 << "." << endl;
} else if (v == n2) {
cout << n2 << " is an ancestor of " << n1 << "." << endl;
} else {
cout << "LCA of " << n1 << " and " << n2 << " is " << v << "." << endl;
}
} else if (s.find(n1) != s.end()) {
cout << "ERROR: " << n2 << " is not found." << endl;
} else if (s.find(n2) != s.end()) {
cout << "ERROR: " << n1 << " is not found." << endl;
} else {
cout << "ERROR: " << n1 << " and " << n2 << " are not found." << endl;
} } return 0;
}
最后还是有一组数据没有通过。
建树的时候一定要注意小标的问题。
1 #include <bits/stdc++.h>
2
3 using namespace std;
4
5 typedef struct Node* node;
6
7 struct Node {
8 int val;
9 node left;
10 node right;
11 Node(int v) {
12 val = v;
13 left = NULL;
14 right = NULL;
15 }
16 };
17
18 vector<int> inOrder, preOrder;
19
20 node buildTree(int inl, int inr, int prel, int prer) {
21 // cout << prel << " " << prer << endl;
22 if (prel > prer || inl > inr) return NULL;
23 node root = new Node(preOrder[prel]);
24 int pos = 0;
25 for (int i = inl; i <= inr; ++i) {
26 if (inOrder[i] == preOrder[prel]) {
27 pos = i;
28 break;
29 }
30 }
31 int leftLen = pos - inl;
32 // cout << rightLen << " " << leftLen << endl;
33 root->left = buildTree(inl, pos - 1, prel + 1, prel + leftLen);
34 root->right = buildTree(pos + 1, inr, prel + leftLen + 1, prer);
35 return root;
36 }
37
38 node LCA(node root, int u, int v) {
39 if (!root || root->val == u || root->val == v) return root;
40 node left = LCA(root->left, u, v);
41 node right = LCA(root->right, u, v);
42 return !left ? right : !right ? left : root;
43 }
44
45 int main() {
46 int m, n;
47 cin >> m >> n;
48 inOrder.resize(n);
49 preOrder.resize(n);
50 for (int i = 0; i < n; ++i) cin >> inOrder[i];
51 for (int i = 0; i < n; ++i) cin >> preOrder[i];
52 set<int> visited(inOrder.begin(), inOrder.end());
53 node root = buildTree(0, n - 1, 0, n - 1);
54 int u, v;
55 for (int i = 0; i < m; ++i) {
56 cin >> u >> v;
57 if (visited.find(u) != visited.end() &&
58 visited.find(v) != visited.end()) {
59 node lca = LCA(root, u, v);
60 if (lca->val == u)
61 cout << u << " is an ancestor of " << v << "." << endl;
62 else if (lca->val == v)
63 cout << v << " is an ancestor of " << u << "." << endl;
64 else
65 cout << "LCA of " << u << " and " << v << " is " << lca->val
66 << "." << endl;
67 } else if (visited.find(u) != visited.end()) {
68 cout << "ERROR: " << v << " is not found." << endl;
69 } else if (visited.find(v) != visited.end()) {
70 cout << "ERROR: " << u << " is not found." << endl;
71 } else {
72 cout << "ERROR: " << u << " and " << v << " are not found." << endl;
73 }
74 }
75
76 return 0;
77 }
不用建树的代码:
1 #include <iostream>
2 #include <vector>
3 #include <map>
4 using namespace std;
5 map<int, int> pos;
6 vector<int> in, pre;
7 void lca(int inl, int inr, int preRoot, int a, int b) {
8 if (inl > inr) return;
9 int inRoot = pos[pre[preRoot]], aIn = pos[a], bIn = pos[b];
10 if (aIn < inRoot && bIn < inRoot)
11 lca(inl, inRoot-1, preRoot+1, a, b);
12 else if ((aIn < inRoot && bIn > inRoot) || (aIn > inRoot && bIn < inRoot))
13 printf("LCA of %d and %d is %d.\n", a, b, in[inRoot]);
14 else if (aIn > inRoot && bIn > inRoot)
15 lca(inRoot+1, inr, preRoot+1+(inRoot-inl), a, b);
16 else if (aIn == inRoot)
17 printf("%d is an ancestor of %d.\n", a, b);
18 else if (bIn == inRoot)
19 printf("%d is an ancestor of %d.\n", b, a);
20 }
21 int main() {
22 int m, n, a, b;
23 scanf("%d %d", &m, &n);
24 in.resize(n + 1), pre.resize(n + 1);
25 for (int i = 1; i <= n; i++) {
26 scanf("%d", &in[i]);
27 pos[in[i]] = i;
28 }
29 for (int i = 1; i <= n; i++) scanf("%d", &pre[i]);
30 for (int i = 0; i < m; i++) {
31 scanf("%d %d", &a, &b);
32 if (pos[a] == 0 && pos[b] == 0)
33 printf("ERROR: %d and %d are not found.\n", a, b);
34 else if (pos[a] == 0 || pos[b] == 0)
35 printf("ERROR: %d is not found.\n", pos[a] == 0 ? a : b);
36 else
37 lca(1, n, 1, a, b);
38 }
39 return 0;
40 }
1151 LCA in a Binary Tree (30point(s))的更多相关文章
- PAT 1151 LCA in a Binary Tree[难][二叉树]
1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...
- 【PAT 甲级】1151 LCA in a Binary Tree (30 分)
题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...
- PAT 甲级 1151 LCA in a Binary Tree
https://pintia.cn/problem-sets/994805342720868352/problems/1038430130011897856 The lowest common anc ...
- 1151 LCA in a Binary Tree(30 分)
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- PAT Advanced 1151 LCA in a Binary Tree (30) [树的遍历,LCA算法]
题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...
- 1151 LCA in a Binary Tree
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- PAT甲级|1151 LCA in a Binary Tree 先序中序遍历建树 lca
给定先序中序遍历的序列,可以确定一颗唯一的树 先序遍历第一个遍历到的是根,中序遍历确定左右子树 查结点a和结点b的最近公共祖先,简单lca思路: 1.如果a和b分别在当前根的左右子树,当前的根就是最近 ...
- PAT_A1151#LCA in a Binary Tree
Source: PAT A1151 LCA in a Binary Tree (30 分) Description: The lowest common ancestor (LCA) of two n ...
- PAT-1151(LCA in a Binary Tree)+最近公共祖先+二叉树的中序遍历和前序遍历
LCA in a Binary Tree PAT-1151 本题的困难在于如何在中序遍历和前序遍历已知的情况下找出两个结点的最近公共祖先. 可以利用据中序遍历和前序遍历构建树的思路,判断两个结点在根节 ...
随机推荐
- Kubernetes-6.Service
docker version:20.10.2 kubernetes version:1.20.1 本文概述Kubernetes Service的基本原理和使用. 服务 Service是将运行在一组Po ...
- golang操作redis/go-redis库
目录 Redis介绍 Redis支持的数据结构 Redis应用场景 准备Redis环境 go-redis库 安装 连接 普通连接 V8新版本相关 连接Redis哨兵模式 连接Redis集群 基本使用 ...
- 因MemoryCache闹了个笑话
前言 是这么一回事: 我正在苦思一个业务逻辑,捋着我还剩不多的秀发,一时陷入冥想中...... 突然聊天图标一顿猛闪,打开一看,有同事语音: 大概意思是:同事把项目中Redis部分缓存换成Memory ...
- 追溯 MySQL Statement Cancellation Timer
原文 1. 背景 在 jstack 的内容中可以看到以下的 MySQL Statement Cancellation Timer 守护线程, 在业务高峰期的时候会出现大量的这类守护线程, 由此追溯该线 ...
- slickgrid ( nsunleo-slickgrid ) 4 解决点击不切换单元格的问题
slickgrid ( nsunleo-slickgrid ) 4 解决点击不切换单元格的问题 上一次解决了列选择和区域选择冲突的问题,昨天太忙了,并且要陪小宝早点睡觉,就啥也没有赶上.今天上班面试. ...
- Django1和2的区别
一.路由的区别 1.Django1中的url from django.conf.urls import url # 使用url关键字 urlpatterns = [ url('article-(\d+ ...
- 十分钟学会Scratch图形化编程
一.概要 Scratch是麻省理工学院开发的供儿童或者初学者学习编程的开发平台.其通过点击并拖拽的方式,完成编程,可以使儿童或者成人编程初学者学习编程基础概念等.Scratch是一款积木式图形编程软件 ...
- Lambda 表达式(使用前提、“类型推断”、作用、优缺点、Lambda还能省略的情况)
Lambda 表达式(使用前提."类型推断".作用.优缺点.Lambda还能省略的情况) 1.Lambda使用前提: (1)使用Lambda必须有接口,且接口只有一个抽象方法(即函 ...
- Java关于整型类缓存[-128,127]之间的数字
我们在学习Java的包装类Integer.Long的时候可能会遇到这个问题: ①Integer a = 500;// Integer a = Integer.valueOf(500); 等价于上面的 ...
- Windows下解析命令行参数
linux通常使用GNU C提供的函数getopt.getopt_long.getopt_long_only函数来解析命令行参数. 移植到Windows下 getopt.h #ifndef _GETO ...