题目传送门

题目大意

有一个 \(n\) 个点组成的树,有 \(m\) 次操作,每次将 \(1\to x\) 的路径上每个点都加入一个颜色为 \(c\) 的小球。但是每个点都有大小限制,即小球个数超过一定量之后就不能再加入了。有 \(q\) 次查询,问操作完了之后每个点有多少种不同颜色的小球。

思路

stO llsw yyds Orz

以下皆为 llsw yyds 的思路,与本人无关。

我们首先可以整体二分出每一个点在多久会被填满,然后扫描线一波,问题就是如何判断一个子树内不同颜色的个数。这个我们可以直接容斥,就每次加入一个颜色的时候减掉与之前重复的即可。

时间复杂度 \(\Theta(n\log n)\)。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define MAXN 100005
#define Int int template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} vector <int> G[MAXN];
int n,m,uni,tmpc[MAXN]; struct Mod{
int u,c;
}seq[MAXN]; int ind,tur[MAXN],ans[MAXN],lim[MAXN],dfn[MAXN],dep[MAXN],siz[MAXN],par[MAXN][21];
void dfs (int u,int fa){
dfn[u] = ++ ind,tur[ind] = u,par[u][0] = fa,dep[u] = dep[fa] + 1,siz[u] = 1;
for (Int i = 1;i <= 20;++ i) par[u][i] = par[par[u][i - 1]][i - 1];
for (Int v : G[u]) if (v ^ fa) dfs (v,u),siz[u] += siz[v];
} int getlca (int u,int v){
if (dep[u] < dep[v]) swap (u,v);
for (Int dis = dep[u] - dep[v],i = 20;~i;-- i) if (dis >> i & 1) u = par[u][i];
if (u == v) return u;
else{
for (Int i = 20;~i;-- i) if (par[u][i] ^ par[v][i]) u = par[u][i],v = par[v][i];
return par[u][0];
}
} struct Bit_Tree{
int sum[MAXN];
int lowbit (int x){return x & (-x);}
void modify (int x,int v){for (Int i = x;i <= n;i += lowbit (i)) sum[i] += v;}
int query (int x){int res = 0;for (Int i = x;i;i -= lowbit (i)) res += sum[i];return res;}
int query (int l,int r){return query (r) - query (l - 1);}
}Tree; vector <int> qry[MAXN]; void Solve (vector <int> &tmp,int l,int r){
if (tmp.empty()) return ;
if (l == r){
for (Int u : tmp) qry[l].push_back (u);
return tmp.clear();
}
vector <int> lson,rson;
int mid = (l + r) >> 1;
for (Int i = l ? l : 1;i <= mid;++ i) Tree.modify (dfn[seq[i].u],1);
for (Int u : tmp){
if (Tree.query (dfn[u],dfn[u] + siz[u] - 1) < lim[u]) rson.push_back (u);
else lson.push_back (u);
}
tmp.clear();
Solve (rson,mid + 1,r);
for (Int i = l ? l : 1;i <= mid;++ i) Tree.modify (dfn[seq[i].u],-1);
Solve (lson,l,mid);
} set <int> colS[MAXN]; void Insert (set <int> &S,int u){
auto res = S.insert (dfn[u]);
if (!res.second) return ;
Tree.modify (dfn[u],1);
auto it = res.first;int p = -1,q = -1;
if (it != S.begin()) Tree.modify (dfn[getlca (u,p = tur[*-- it])],-1),++ it;
if (++ it != S.end()) Tree.modify (dfn[getlca (u,q = tur[*it])],-1);
if (~q && ~p) Tree.modify (dfn[getlca (p,q)],1);
} signed main(){
read (n);
for (Int i = 2,u,v;i <= n;++ i) read (u,v),G[u].push_back (v),G[v].push_back (u);
for (Int i = 1;i <= n;++ i) read (lim[i]);
read (m);
for (Int i = 1;i <= m;++ i) read (seq[i].u,seq[i].c),tmpc[i] = seq[i].c;
sort (tmpc + 1,tmpc + m + 1),uni = unique (tmpc + 1,tmpc + m + 1) - tmpc - 1;
for (Int i = 1;i <= m;++ i) seq[i].c = lower_bound (tmpc + 1,tmpc + m + 1,seq[i].c) - tmpc;
dfs (1,0);
vector <int> tmp;for (Int i = 1;i <= n;++ i) tmp.push_back (i);
Solve (tmp,0,m);
for (Int i = 1;i <= m;++ i){
Insert (colS[seq[i].c],seq[i].u);
for (Int u : qry[i]) ans[u] = Tree.query (dfn[u],dfn[u] + siz[u] - 1);
}
int q;read (q);
for (Int i = 1,x;i <= q;++ i) read (x),write (ans[x]),putchar ('\n');
return 0;
}

题解 2020.10.24 考试 T4 模板的更多相关文章

  1. 题解 2020.10.24 考试 T2 选数

    题目传送门 题目大意 见题面. 思路 本来以为zcx.pxj变强了,后来发现是SPJ出问题了...考试的时候感觉有点人均啊...结果自己还是只想出来一半. 我们假设 \(f(x)=(\lfloor\f ...

  2. 题解 2020.10.24 考试 T3 数列

    题目传送门 题目大意 给出一个数 \(n\),你要构造一个数列,满足里面每个数都是 \(n\) 的因子,且每一个数与前面不互质的个数不超过 \(1\).问有多少种合法方案. 保证 \(n\) 的不同质 ...

  3. 10.24考试题解qwq

    考点难度都很合适的一套题目,大概在day1到day2之前 T1 猴猴最喜欢在树上玩耍,一天猴猴又跳上了一棵树,这棵树有N个苹果,每个苹果有一个编号,分别为0~N-1,它们之间由N-1个树枝相连,猴猴可 ...

  4. 2020.10.24【普及组】模拟赛C组 总结

    T1:暴力 1:先从 6 个中选三个,再把选出的三个全排列,全排列后再判断是否可行 2:把 6 个全都全排列,然后判断 T2:判断误差 1:减法时结果加上 1e-8 2:把小数乘上 1e6 左右 考试 ...

  5. T4 模板入门

    T4,即4个T开头的英文字母组合:Text Template Transformation Toolkit.T4(Text Template Transformation Toolkit)是微软官方在 ...

  6. T4 模板

    T4模板入门 T4,即4个T开头的英文字母组合:Text Template Transformation Toolkit.T4(Text Template Transformation Toolkit ...

  7. CSharpGL(12)用T4模板生成CSSL及其renderer代码

    CSharpGL(12)用T4模板生成CSSL及其renderer代码 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码中包含10多个独立 ...

  8. MVC实用架构设计(三)——EF-Code First(3):使用T4模板生成相似代码

    前言 经过前面EF的<第一篇>与<第二篇>,我们的数据层功能已经较为完善了,但有不少代码相似度较高,比如负责实体映射的 EntityConfiguration,负责仓储操作的I ...

  9. 【转】- 使用T4模板批量生成代码

    前言 之前在 “使用T4模板生成代码 - 初探” 文章简单的使用了T4模板的生成功能,但对于一个模板生成多个实例文件,如何实现这个方式呢?无意发现一个解决方案 “MultipleOutputHelpe ...

随机推荐

  1. [转]VRRP协议详解

    原文地址:VRRP协议详解 文中涉及缩略语 缩略语 英文全名 中文解释 VRRP Virtual Router Redundancy Protocol 虚拟路由器冗余协议 NQA Network Qu ...

  2. Ubuntu 设置不更新某些软件

    方法来自:https://blog.csdn.net/zhrq95/article/details/79527073 保持某软件版本不变,如我wps-office,(已测有效@Ubuntu 16.04 ...

  3. PENETRATION第一步

    PENETRATION第一步 第一次去打靶机,本来都快成功了,电脑蓝屏警告了...(=_=) 靶机下载连接 (https://download.vulnhub.com/admx/AdmX_new.7z ...

  4. client-go实战之四:dynamicClient

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. shell脚本中的多行注释

    shell 中注释的使用方法 1. 单行注释 单行注释最为常见,它是通过一个'#'来实现的.注意shell脚本的最开始部分"#!/bin/bash"的#号不是用来注释的. 2. 多 ...

  6. LVS负载均衡集群--NAT模式部署

    目录: 一.企业群集应用概述 二.负载均衡群集架构 三.负载均衡群集工作模式分析 四.关于LVS虚拟服务器 五.NAT模式 LVS负载均衡群集部署 一.企业群集应用概述 1.群集的含义 Cluster ...

  7. 法术迸发(Spellburst)

    描述 法术迸发 (EN:Spellburst ) 是一种在<通灵学园>中加入的关键字异能,在玩家打出一张法术牌后触发,只能触发一次. 若随从在法术结算过程中死亡,则不会触发效果 思路 首先 ...

  8. 迷宫3---BFS

    经过思考蒜头君终于解决了怎么计算一个迷宫的最短路问题,于是蒜头君找到一个新的迷宫图,来验证自己是否真的会计算一个迷宫的最短路. 为了检验自己计算的是否正确,蒜头君特邀你一起来计算. 输入格式 第一行输 ...

  9. UVA 506 System Dependencies(模拟 烂题)

    https://vjudge.net/problem/UVA-506 题目是给出了五种指令,DEPEND.INSTALL.REMOVE.LIST.END,操作的格式及功能如下: DEPEND item ...

  10. 洛谷P1449——后缀表达式(栈模拟)

    题目描述 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优先级). 如:3*(5–2)+7对应 ...