​​​​​​​​​​​​​​大致意思就是现在你要不断的奔跑到不同的地点去接球,每一秒可以移动一个单位长度,而你接到一个球的动作是瞬间的,收益是y[i]-t*v[i] 然后呢,要求分数最高。

起初看这个题目QWQ完全没有任何思路,大概只能想到......

先按照x排序(记得把起始位置也加进去)

然后令f[l][r]表示收集完l~r的球,最后在l的最大收益

g[l][r]收集完l~r的球,最后在r的最大收益

然后...然后....然后....

我就去看题解了。

好了 进入正题。

首先我们定义

f[l][r]表示收集完l~r的球,最后在l的最小损失

g[l][r]收集完l~r的球,最后在r的最小损失

最后用总收益减去损失

在按照x排完序之后

进行区间dp,由小区间转到大区间

f[l][r]可以从f[l+1][r]和g[l+1][r]转移而来

g[l][r]可以从f[l][r-1]和g[l][r-1]转移而来

我们可以这么理解

每当我们去接下一个球的时候,其他球在向下掉,相当于我们损失了这些的收益

那么时间就是x之差的绝对值,然后提前用前缀和预处理v

就可以直接算出损失了多少收益了

f[l][r]=min(f[l][r],f[l+1][r]+(sum[n]-sum[r]+sum[l])abs(a[l+1].x-a[l].x));

f[l][r]=min(f[l][r],g[l+1][r]+(sum[n]-sum[r]+sum[l])
abs(a[r].x-a[l].x));

g[l][r]=min(g[l][r],f[l][r-1]+(sum[n]-sum[r-1]+sum[l-1])*abs(a[l].x-a[r].x));

g[l][r]=min(g[l][r],g[l][r-1]+(sum[n]-sum[r-1]+sum[l-1])*abs(a[r-1].x-a[r].x));

转移式子就不过多解释了

然后最后用ans-min(f[1][n],g[1][n])再 /1000就行

最后注意初始化的时候 嗯

QWQ我的写法和很多题解都不一样 不过也过了QWQ不太知道是为什么

for (int i=1;i<=n;i++) f[i][i]=abs(a[i].x-start)sum[n],g[i][i]=abs(a[i].x-start)sum[n];

上代码 嗯

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 1010; struct Node{
int v,x,y;
}; Node a[maxn];
int f[maxn][maxn]; //i~j接完 最后在i
int g[maxn][maxn]; // i~j接完,最后在j
int sum[maxn];
int start,n;
double ans; bool cmp(Node a,Node b)
{
return a.x<b.x;
} int main()
{
n=read();
start=read();
memset(f,127/3,sizeof(f));
memset(g,127/3,sizeof(g));
for (int i=1;i<=n;i++) a[i].x=read();
for (int i=1;i<=n;i++) a[i].y=read(),ans+=a[i].y;
for (int i=1;i<=n;i++) a[i].v=read();
n++;
a[n].x=start;
sort(a+1,a+1+n,cmp);
for (int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i].v;
for (int i=1;i<=n;i++) f[i][i]=abs(a[i].x-start)*sum[n],g[i][i]=abs(a[i].x-start)*sum[n];
for (int i=2;i<=n;i++)
for (int l=1;l<=n-i+1;l++)
{
int r = l+i-1;
f[l][r]=min(f[l][r],f[l+1][r]+(sum[n]-sum[r]+sum[l])*abs(a[l+1].x-a[l].x));
f[l][r]=min(f[l][r],g[l+1][r]+(sum[n]-sum[r]+sum[l])*abs(a[r].x-a[l].x));
g[l][r]=min(g[l][r],f[l][r-1]+(sum[n]-sum[r-1]+sum[l-1])*abs(a[l].x-a[r].x));
g[l][r]=min(g[l][r],g[l][r-1]+(sum[n]-sum[r-1]+sum[l-1])*abs(a[r-1].x-a[r].x));
}
ans=ans-min((double)f[1][n],(double)g[1][n]);
printf("%.3lf",ans/1000);
return 0;
}

bzoj2037 Sue的小球(区间dp,考虑到对未来的贡献)的更多相关文章

  1. 【BZOJ2037】[Sdoi2008]Sue的小球 区间DP+费用提前

    [BZOJ2037][Sdoi2008]Sue的小球 Description Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而 ...

  2. BZOJ2037: [Sdoi2008]Sue的小球(区间DP)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 869  Solved: 483[Submit][Status][Discuss] Description ...

  3. BZOJ-2037 Sue的小球 DP+费用提前

    似乎很早时学长考过很类似的? 2037: [Sdoi2008]Sue的小球 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 558 Solved: 300 ...

  4. [luogu2446][bzoj2037][SDOI2008]Sue的小球【区间DP】

    分析 简单区间DP, 定义状态f[i][j][0/1]为取完i-j的小球最后取i/j上的小球所能获得的最大价值. 排序转移. ac代码 #include <bits/stdc++.h> # ...

  5. 【BZOJ2037】Sue的小球(动态规划)

    [BZOJ2037]Sue的小球(动态规划) 题面 BZOJ 题解 莫名想到这道题目 很明显是一样的 设\(f[i][j][0/1]\)表示已经接到了\(i-j\)这一段的小球 当前在\(i\)或者在 ...

  6. 区间DP复习

    区间DP复习 (难度排序:(A,B),(F,G,E,D,H,I,K),(C),(J,L)) 这是一个基本全在bzoj上的复习专题 没有什么可以说的,都是一些基本的dp思想 A [BZOJ1996] [ ...

  7. 洛谷 P2466 Sue的小球 解题报告

    P2466 [SDOI2008]Sue的小球 题目描述 Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而,Sue的目标并不是当 ...

  8. 2037: [Sdoi2008]Sue的小球

    2037: [Sdoi2008]Sue的小球 链接 题解 论文 代码 #include<cstdio> #include<algorithm> #include<cstr ...

  9. [USACO2005 nov] Grazing on the Run【区间Dp】

    Online Judge:bzoj1742,bzoj1694 Label:区间Dp 题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我 ...

随机推荐

  1. VSCode添加某个插件后,Python 运行时出现Segmentation fault (core dumped) 解决办法

    在VSCode添加某个插件后,Debug出现Segmentation fault (core dumped) 解决方案,在当前environment下运行: conda update --all

  2. rasa form的中断形式 自然机器语言学习 人工智能

    Forms形式 最常见的对话模式之一是从用户那里收集一些信息以便做某事(预订餐厅.调用 API.搜索数据库等).这也称为**槽填充**. 用法# 要在 Rasa Open Source 中使用表单,您 ...

  3. MySQL修改配置文件 避免中文乱码

    MySQL修改配置文件 避免中文乱码 MySQL安装后默认的服务器字符集是拉丁文,也就是说默认 character_set_server = latin1 ,这是造成 MySQL 中文乱码的主要原因之 ...

  4. RabbitMQ-进阶

    目录 过期时间TTL 设置队列TTL 消息确认机制的配置 死信队列 内存磁盘的监控 RabbitMQ的内存控制 命令的方式 配置文件方式 rabbitmq.conf RabbitMQ的内存换页 Rab ...

  5. MySQL——SQL语句入门

    1.DDL: 数据库定义语言 定义对象:库.表 何为定义: 库的定义: 创建 删除 修改---->修改本身以及库中的对象(表.视图.函数.触发器...) 表的定义: 创建---->定义表的 ...

  6. K8s 系列(四) - 浅谈 Informer

    1. 概述 进入 K8s 的世界,会发现有很多的 Controller,它们都是为了完成某类资源(如 pod 是通过 DeploymentController, ReplicaSetControlle ...

  7. Tricks

    由于本人着实有些菜,因此在此积累一些巧妙的 \(Tricks\) ,以备不时之需... 与其说是 \(Tricks\) 不如说是学习笔记?? 数学 组合数 常见的数列 斐波那契数列 图论 树论 \(P ...

  8. 一行Java代码实现游戏中交换装备

    摘要:JDK 1.5 开始 JUC 包下提供的 Exchanger 类可用于两个线程之间交换信息. 本文分享自华为云社区<一行Java代码实现两玩家交换装备[并发编程]>,作者:陈皮的Ja ...

  9. JAVA安全基础之代理模式(一)

    JAVA安全基础之代理模式(一) 代理模式是java的一种很常用的设计模式,理解代理模式,在我们进行java代码审计时候是非常有帮助的. 静态代理 代理,或者称为 Proxy ,简单理解就是事情我不用 ...

  10. Playfield 类方法的注释

    前言 本篇随笔的底包采用的是百度炉石兄弟吧20200109折腾版中自带的 routines 文件. 本次仅为绝大多数方法添加 xml 注释和简单解析,没有具体解析与重构. Playfield 类方法众 ...