Problem F: Tanks a Lot
Imagine you have a car with a very large gas tank - large enough to hold whatever amount you need.
You are traveling on a circular route on which there are a number of gas stations. The total gas in all
the stations is exactly the amount it takes to travel around the circuit once. When you arrive at a gas
station, you add all of that station’s gas to your tank. Starting with an empty tank, it turns out there
is at least one station to start, and a direction (clockwise or counter-clockwise) where you can make it
around the circuit. (On the way home, you might ponder why this is the case - but trust us, it is.)
Given the distance around the circuit, the locations of the gas stations, and the number of miles your
car could go using just the gas at each station, find all the stations and directions you can start at and
make it around the circuit.
Input
There will be a sequence of test cases. Each test case begins with a line containing two positive integers
c and s, representing the total circumference, in miles, of the circle and the total number of gas stations.
Following this are s pairs of integers t and m. In each pair, t is an integer between and c− measuring
the clockwise location (from some arbitrary fixed point on the circle) around the circumference of one
of the gas stations and m is the number of miles that can be driven using all of the gas at the station.
All of the locations are distinct and the maximum value of c is ,. The last test case is followed
by a pair of ’s.
Output
For each test case, print the test case number (in the format shown in the example below) followed by a
list of pairs of values in the form i d, where i is the gas station location and d is either C, CC, or CCC,
indicating that, when starting with an empty tank, it is possible to drive from location i around in a
clockwise (C) direction, counterclockwise (CC) direction, or either direction (CCC), returning to location
i. List the stations in order of increasing location.
Sample Input Sample Output
Case : C CC C
Case : CCC CCC CCC CCC CCC

题意:给你一个长度为c的环,环上面有m个加油站,各个加油站油的总和刚好够你在环上面跑一圈,一开始你的车没有油,现在你可以选一个加油站作为出发点并获得该加油站的所有油,然后选择顺时针或逆时针行走,没经过一个加油站你可以获得那里的油,问是否可以最终回到选择为起始的那个加油站。 这m个加油站有哪些是可以作为起始点的,可以的话应该顺时针出发还是逆时针出发还是两个方向都可以?

思路:对于环可以头尾接一遍变成直线,将加油站按顺序排列。设need_i为只用第i个加油站的油到第i+1个加油站还需要的油量, 比如1(2)---》 5(3)---》7(1)  那么从油站1到油站5还欠了2, 即need为-2, 从油站5到油站7多了2,即need为2

那么对于第i个加油站能作为起点,相当于从i开始的need数组的前缀和不能为负数。 那么我们可以直接做一遍前缀和,然后对于一个区间[l,r],要想以l位置为起点的前缀和在这个区间没有负数,相当于sum[l-1]<=min(sum[k])  l<=k<=r  相当于这个区间的值都减去sum[l-1]  查询区间最小值可以用rmq处理

对于逆时针方向 做法就完全一样了,逆着求一下need数组。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <string>
#include <stack>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <map>
#include <set>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long ll;
const int N = 5e5 + ; int sum1[N], sum2[N];
int dir[N];
int dp[N][];
int mm[N];
int n, k; struct node {
int t, m;
friend bool operator < (node a, node b) {
return a.t < b.t;
};
};
node g[N];
void initRMQ(int nn, int b[]) {
mm[] = -;
for(int i = ; i <= nn; ++i)
{
mm[i] = ((i & (i - )) == ) ? mm[i - ] + : mm[i - ];
dp[i][] = b[i];
}
for(int j = ; j <= mm[nn]; ++j)
for(int i = ; i + ( << j) - <= nn; ++i)
dp[i][j] = min(dp[i][j - ], dp[i + ( << (j-))][j - ]);
}
int rmq(int x, int y) {
int k = mm[y - x + ];
return min(dp[x][k], dp[y - ( << k) + ][k]);
}
void init1() {
int T = k * ;
memset(dir, , sizeof dir);
sum1[] = ;
for(int i = ; i <= T; ++i) {
int s = (g[i].t - g[i - ].t + n) % n;
sum1[i - ] = sum1[i - ] + g[i-].m - s;
}
initRMQ(T, sum1);
}
void init2() {
int T = k * ;
sum2[] = sum2[T + ] = ;
for(int i = T; i > ; --i) {
int s = (g[i].t - g[i - ].t + n) % n;
sum2[i] = sum2[i + ] + g[i].m - s;
}
initRMQ(T, sum2); }
void solve1() {
for(int i = ; i <= k; ++i) {
if(sum1[i - ] <= rmq(i, i + k - )) {
dir[ g[i].t ] = ;
}
}
}
void solve2() {
int T = k * ;
for(int i = T; i > T - k; --i) {
if(sum2[i + ] <= rmq(i - k + , i)) {
if(dir[ g[i].t ]) dir[ g[i].t ] = ;
else dir[ g[i].t ] = ;
}
}
}
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
#endif
int cas = ;
while(~scanf("%d%d", &n, &k)) {
if(n == && k == ) break;
for(int i = ; i <= k; ++i) {
scanf("%d%d", &g[i].t, &g[i].m);
}
sort(g + , g + + k);
for(int i = ; i <= k; ++i) {
g[i + k].t = g[i].t;
g[i + k].m = g[i].m;
}
// for(int i = 1; i <= k * 2; ++i) printf("%d %d\n", g[i].t, g[i].m);
init1();
solve1();
init2();
solve2();
printf("Case %d: ", cas++);
for(int i = ; i <= k; ++i) {
if(dir[ g[i].t ] == ) printf("%d C ", g[i].t);
if(dir[ g[i].t ] == ) printf("%d CC ", g[i].t);
if(dir[ g[i].t ] == ) printf("%d CCC ", g[i].t);
}
puts("");
}
return ;
}

Gym 100646 F Tanks a Lot RMQ的更多相关文章

  1. Gym 100646 You’ll be Working on the Railroad dfs

    You'll be Working on the Railroad 题目连接: http://codeforces.com/gym/100646/attachments Description Con ...

  2. Gym 100646 Problem C: LCR 模拟题

    Problem C: LCR 题目连接: http://codeforces.com/gym/100646/attachments Description LCR is a simple game f ...

  3. Gym 100646 Problem E: Su-Su-Sudoku 水题

    Problem E: Su-Su-Sudoku/center> 题目连接: http://codeforces.com/gym/100646/attachments Description By ...

  4. Gym 100637F F. The Pool for Lucky Ones

    F. The Pool for Lucky Ones Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  5. codeforces Gym 100187F F - Doomsday 区间覆盖贪心

    F. Doomsday Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100187/problem/F ...

  6. Codeforces gym 100685 F. Flood bfs

    F. FloodTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100685/problem/F Desc ...

  7. Gym 100637F F. The Pool for Lucky Ones 暴力

    F. The Pool for Lucky Ones Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  8. Codeforces Gym 100513F F. Ilya Muromets 线段树

    F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...

  9. Codeforces Gym 100513F F. Ilya Muromets 水题

    F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...

随机推荐

  1. [Evolutionary Algorithm] 进化算法简介

    进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...

  2. T1加权像(T1 weighted image,T1WI)

    T1加权成像(T1-weighted imaging,T1WI)是指这种成像方法重点突出组织纵向弛豫差别,而尽量减少组织其他特性如横向弛豫等对图像的影响. 弛豫:物理用语,从某一个状态恢复到平衡态的过 ...

  3. Ubuntu Server 14.04 集成

    方便工作出差显示项目整合了下平时常用软件: OS: Ubuntu Server 14.04 VM:VMware Workstation 12.1.0 (不同版本好像会不兼容) 已经安装软件: 1. s ...

  4. mysql 优化

    1.存储过程造数据 CREATE DEFINER=`root`@`localhost` PROCEDURE `generate_test_data`(`n` int) begin declare i ...

  5. ObjC运行时部分概念解析(一)

    转型iOS已经许久了,Runtime(运行时)还没有好好了解过.之前没有阅读过源码,紧紧凭借自己的臆测.现在阅读下源码,做一些笔记.方便再次翻阅 SEL SEL是一个关键字,如果没有涉及runtime ...

  6. TJpgDec使用说明

    TJpgDec模块应用说明 [TOC] 怎么使用 首先,你应该构建和运行如下所示示例程序.这是一个典型的使用TJpgDec模块,它有助于调试和缩小问题. 解码会话分为两个阶段.第一阶段是分析JPEG图 ...

  7. WPF获取应用程序启动目录的方法

    1.AppDomain.CurrentDomain.BaseDirectory using System; namespace ConsoleApplication1 { class Program ...

  8. 搭建 AngularJS+Ionic+Cordova 开发环境并运行一个demo

    目前的手机APP有三类:原生APP,WebAPP,HybridApp:HybridApp结合了前两类APP各自的优点,越来越流行. Cordova就是一个中间件,让我们把WebAPP打包成Hybrid ...

  9. C#中的 特性 详解(转载)

    本篇幅转载于:http://www.cnblogs.com/rohelm/archive/2012/04/19/2456088.html C#中特性详解 特性提供了功能强大的方法,用于将元数据或声明信 ...

  10. ACM/ICPC 之 计算几何入门-叉积-to left test(POJ2318-POJ2398)

    POJ2318 本题需要运用to left test不断判断点处于哪个分区,并统计分区的点个数(保证点不在边界和界外),用来做叉积入门题很合适 //计算几何-叉积入门题 //Time:157Ms Me ...