hdu-2639

The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.

Input

The first line contain a integer T , the number of cases.

Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

Output

One integer per line representing the K-th maximum of the total value (this number will be less than 231).

Sample Input

3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1

Sample Output

12
2
0

题目大意

n块骨头,V容量的背包,把骨头放进包里,求价值第k大时是多少。

思路

就是个01背包的变种,根据dp思想,在01背包的基础上加多一个维度,dp[j][k]表示容量为j的背包下,第k大的价值。

首先考虑第1大的数,是max(dp[i][j], dp[i - 1][j - c[i]] + w[i])

可以推断,第k大的值可以在两组数dp[i][j][z]、dp[i - 1][j - c[i]][z] + w[i],z∈[1, ... , k]中得到

然而并不能直接知道这两组数中前k大的数,所以将dp[i][j][z]放入A[],将dp[i - 1][j - c[i]][z] + w[i]放入B[]

然后将A[]、B[]两组数一起排序,就能得到第k大的数

代码

#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <algorithm>
#include <cmath>
#include <cstdio> using namespace std; typedef long long LL;
const int N = 1005;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7; int main()
{
int T;
cin >> T;
while(T--)
{
LL n, V, K;
cin >> n >> V >> K;
LL w[N], c[N];
for(int i = 1;i <= n;++i)
cin >> w[i];
for(int i = 1;i <= n;++i)
cin >> c[i]; LL dp[N][35];
memset(dp, 0, sizeof(dp));
for(int i = 1;i <= n;++i)
{
for(int j = V;j >= c[i];--j)
{
LL A[35], B[35];
int a, b, num;
for(int k = 1;k <= K;++k)
{
A[k] = dp[j - c[i]][k] + w[i];
B[k] = dp[j][k];
}
A[K + 1] = B[K + 1] = -1;//-1 < 0。a <= K做判断条件会出错
a = b = num = 1;
while(num <= K && (A[a] != -1 || B[b] != -1))
{
if(A[a] > B[b])
dp[j][num] = A[a++];
else
dp[j][num] = B[b++];
if(dp[j][num] != dp[j][num - 1])
num++;
}
}
}
cout << dp[V][K] << endl;
}
return 0;
}

01背包--hdu2639的更多相关文章

  1. dp之01背包hdu2639(第k优解)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639 题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值.......(注意,不要 和它的第一题混 ...

  2. HDU2639(01背包第K大)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. HDU--2639 Bone Collector II(01背包)

    题目http://acm.hdu.edu.cn/showproblem.php?pid=2639 分析:这是求第K大的01背包问题,很经典.dp[j][k]为背包里面装j容量时候的第K大的价值. 从普 ...

  4. NO11——01背包

    # include <stdio.h> # include <stdlib.h> # include <string.h> # define max(x,y) x& ...

  5. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  6. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  7. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

  8. Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)

    传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...

  9. 51nod1085(01背包)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1085 题意: 中文题诶~ 思路: 01背包模板题. 用dp[ ...

随机推荐

  1. Ubuntu14.04下redis安装 配置, redis主从配置

    1.到官网下载redis源码包 wget http://download.redis.io/releases/redis-3.2.8.tar.gz 2.解压 并 编译 .tar.gz cd redis ...

  2. CentOS 7.2配置Apache服务httpd(上)

    http://www.jb51.net/article/97434.htm 二.安装Apache httpd 安装httpd以配置Web服务器, HTTP使用80 / TCP ? 1 2 3 4 5 ...

  3. CodeForces 540D Bad Luck Island (DP)

    题意:一个岛上有石头,剪刀和布,规则就不用说了,问你最后只剩下每一种的概率是多少. 析:很明显的一个概率DP,用d[i][j][k]表示,石头剩下 i 个,剪刀剩下 j 个,布剩下 k 个,d[r][ ...

  4. vCenter Server Heartbeat

    1.简介 vCenter Server Heartbeat为VMware vCenter Server提供关键任务高可用性,保护虚拟基础架构免受硬件.网络.配置等的影响,基于Windows的服务,可为 ...

  5. WordPaster-Drupal 7.34-CKEditor4x

    1.1. 集成到drupal 7x-ck4 插件下载:Drupal 7x, 1.1.1. 安装ckeditor4x 下载插件 说明:下载并解压 CKEditor4x插件:https://yunpan. ...

  6. Android AIDL的用法

    一.什么是AIDL服务   一般创建的服务并不能被其他的应用程序访问.为了使其他的应用程序也可以访问本应用程序提供的服务,Android系统采用了远程过程调用(Remote Procedure Cal ...

  7. 策略和计费控制(PCC)系统研究

    策略和计费控制(PCC)系统研究 研究内容 [TOC "float:left"] 策略与计费控制(PCC)框架1 [架构图](achitecture.png "Archi ...

  8. UT源码162

    (3)设计佣金问题的程序 commission方法是用来计算销售佣金的需求,手机配件的销售商,手机配件有耳机(headphone).手机壳(Mobile phone shell).手机贴膜(Cellp ...

  9. Inno Setup 通用脚本及简要说明( 一般情况够用了)

    ;以下脚本主要完成创建开始菜单和桌面的快捷方式,目录安装. #define MyAppName "我的软件名" #define MyAppVersion "1.0&quo ...

  10. c#设计模式之:外观模式(Facade)

    一.引言 在软件开发过程中,客户端程序经常会与复杂系统的内部子系统进行耦合,从而导致客户端程序随着子系统的变化而变化,然而为了将复杂系统的内部子系统与客户端之间的依赖解耦,从而就有了外观模式,也称作 ...