51nod1805 小树 prufer序列 + 容斥原理
首先考虑$prufer$序列,那么问题转化为求
一个长为$n - 2$的序列,总共有$n$个元素,恰有$m$个元素不出现在序列中的方案数
考虑容斥,答案即为 至少$m$个元素不出现 - 至少$m + 1$个不出现 + 至少$m + 2$个不出现......
至少$m$个元素不出现的方案数为$C(n, m) * (n - i)^{n - 2}$
接着考虑容斥系数,通过数学归纳法,我们发现是$C(i, m)$
然后就没了,复杂度$O(n \log n)$
注:$n = 1$或者$n = 2$时,树没有$prufer$序列,记得特判
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define ri register int
#define sid 1005000
#define mod 1000000007 int n, m, ans;
int inv[sid], fac[sid]; void Init_C() {
fac[] = inv[] = fac[] = inv[] = ;
for(ri i = ; i <= n; i ++) {
inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
fac[i] = 1ll * fac[i - ] * i % mod;
}
for(ri i = ; i <= n; i ++)
inv[i] = 1ll * inv[i] * inv[i - ] % mod;
} int C(int n, int m) {
if(n < m) return ;
return 1ll * fac[n] * inv[m] % mod * inv[n - m] % mod;
} int fp(int a, int k) {
int ret = ;
for( ; k; k >>= , a = 1ll * a * a % mod)
if(k & ) ret = 1ll * ret * a % mod;
return ret;
} int main() { cin >> n >> m;
if(n == || n == )
{ printf("1\n"); return ; } Init_C();
for(ri i = m, j = ; i <= n; i ++, j *= -) {
ans += (1ll * j * C(i, m) * C(n, i) % mod * fp(n - i, n - ) % mod);
if(ans < ) ans += mod; if(ans >= mod) ans -= mod;
} printf("%d\n", ans);
return ;
}
51nod1805 小树 prufer序列 + 容斥原理的更多相关文章
- 【专题】计数问题(排列组合,容斥原理,Prufer序列)
[容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...
- bzoj 1005 1211 prufer序列总结
两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...
- bzoj1211: prufer序列 | [HNOI2004]树的计数
题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...
- [BZOJ1211][HNOI2004]树的计数(Prufer序列)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- prufer序列笔记
prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定 ...
- BZOJ1430小猴打架——prufer序列
题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...
- 【XSY2519】神经元 prufer序列 DP
题目描述 有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制.问你有多少种方案. \( ...
随机推荐
- 【BZOJ】2565: 最长双回文串
[题意]给定小写字母字符串s,求最长的 [ 可以分成左右两个回文串的 ] 子串,n<=10^5. [算法]回文树 [题解]对于每个字符x,处理出以x结尾的最长回文串,以x开头的最长回文串,然后枚 ...
- js父页面和子页面相互取值
iframe子页面与父页面通信根据iframe中src属性是同域链接还是跨域链接,通信方式也不同. 一.同域下父子页面的通信 父页面parent.html <html> <head& ...
- Linux内核中的Cache段
Linux内核中的Cache段 原文地址:http://blogold.chinaunix.net/u2/85263/showart_1743693.html 最近移植LEON3的内核时,了解了一些简 ...
- sar命令使用【转】
sar(System Activity Reporter系统活动情况报告)是目前 Linux 上最为全面的系统性能分析工具之一,可以从多方面对系统的活动进行报告,包括:文件的读写情况.系统调用的使用情 ...
- 字典对象的 Pythonic 用法(上篇)
字典对象在Python中作为最常用的数据结构之一,和数字.字符串.列表.元组并列为5大基本数据结构,字典中的元素通过键来存取,而非像列表一样通过偏移存取.笔者总结了字典的一些常用Pyhonic用法,这 ...
- 当array_filter函数的callback留空时 他会过滤掉所有键值为false的键
当array_filter函数的callback留空时 他会过滤掉所有键值为false的键
- Percona XtraDB Cluster(PXC) -集群环境安装
Percona XtraDB Cluster(PXC) ---服务安装篇 1.测试环境搭建: Ip 角色 OS PXC-version 172.16.40.201 Node1 Redhat/C ...
- POJ 1511 Invitation Cards(Dijkstra(优先队列)+SPFA(邻接表优化))
题目链接:http://poj.org/problem?id=1511 题目大意:给你n个点,m条边(1<=n<=m<=1e6),每条边长度不超过1e9.问你从起点到各个点以及从各个 ...
- @PathVariable @RequestParam @RequestBody 的区别
转载自:@RequestParam @RequestBody @PathVariable 等参数绑定注解详解 简介: handler method 参数绑定常用的注解,我们根据他们处理的Request ...
- Linux 基础——常用的Linux网络命令
一.学Linux网络命令有什么好处 网络的出现,我们的生活更方便了,处理事情的效率也越来越高,也可以看到全世界文化的差异.同时我们接受新事物的信息越来越来强,新事物的信息也越来越来多.网络对于我们尔等 ...