首先考虑$prufer$序列,那么问题转化为求

一个长为$n - 2$的序列,总共有$n$个元素,恰有$m$个元素不出现在序列中的方案数

考虑容斥,答案即为 至少$m$个元素不出现 - 至少$m + 1$个不出现 + 至少$m + 2$个不出现......

至少$m$个元素不出现的方案数为$C(n, m) * (n - i)^{n - 2}$

接着考虑容斥系数,通过数学归纳法,我们发现是$C(i, m)$

然后就没了,复杂度$O(n \log n)$

注:$n = 1$或者$n = 2$时,树没有$prufer$序列,记得特判

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define ri register int
#define sid 1005000
#define mod 1000000007 int n, m, ans;
int inv[sid], fac[sid]; void Init_C() {
fac[] = inv[] = fac[] = inv[] = ;
for(ri i = ; i <= n; i ++) {
inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
fac[i] = 1ll * fac[i - ] * i % mod;
}
for(ri i = ; i <= n; i ++)
inv[i] = 1ll * inv[i] * inv[i - ] % mod;
} int C(int n, int m) {
if(n < m) return ;
return 1ll * fac[n] * inv[m] % mod * inv[n - m] % mod;
} int fp(int a, int k) {
int ret = ;
for( ; k; k >>= , a = 1ll * a * a % mod)
if(k & ) ret = 1ll * ret * a % mod;
return ret;
} int main() { cin >> n >> m;
if(n == || n == )
{ printf("1\n"); return ; } Init_C();
for(ri i = m, j = ; i <= n; i ++, j *= -) {
ans += (1ll * j * C(i, m) * C(n, i) % mod * fp(n - i, n - ) % mod);
if(ans < ) ans += mod; if(ans >= mod) ans -= mod;
} printf("%d\n", ans);
return ;
}

51nod1805 小树 prufer序列 + 容斥原理的更多相关文章

  1. 【专题】计数问题(排列组合,容斥原理,Prufer序列)

    [容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...

  2. bzoj 1005 1211 prufer序列总结

    两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...

  3. bzoj1211: prufer序列 | [HNOI2004]树的计数

    题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...

  4. [BZOJ1211][HNOI2004]树的计数(Prufer序列)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...

  5. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  6. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  7. prufer序列笔记

    prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定 ...

  8. BZOJ1430小猴打架——prufer序列

    题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...

  9. 【XSY2519】神经元 prufer序列 DP

    题目描述 有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制.问你有多少种方案. \( ...

随机推荐

  1. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  2. Spring Boot微服务框架的搭建

    (1)spring boot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发 ...

  3. solr笔记之安装部署到tomcat

    1. 下载 solr 去官网下载,下载的时候选清华的镜像源,这个页面:https://mirrors.tuna.tsinghua.edu.cn/apache/lucene/solr/7.1.0/ 在/ ...

  4. java使用simpleDateFormat格式化日期 时间

    时间日期标识符: yyyy:年 MM:月 dd:日 hh:1~12小时制(1-12) HH:24小时制(0-23) mm:分 ss:秒 S:毫秒 E:星期几 D:一年中的第几天 F:一月中的第几个星期 ...

  5. es6新语法Object.assign()

    1.介绍 Object.assign用于对象的合并,将源对象的所有可枚举属性复制到目标对象,只拷贝源对象自身的属性继承属性补考呗 Object.assign(target,source1,...)第一 ...

  6. Struts结果跳转方式(四种result配置)

    1.转发(默认转发)

  7. perl6检测网站CMS脚本(测试代码)

    代码如下: use HTTP::UserAgent; use JSON::Tiny; my $check-url = 'www.baidu.com'; #say @*ARGS[0]; #检测命令行参数 ...

  8. X86控制寄存器和系统地址寄存器

    80386控制寄存器和系统地址寄存器如下表所示.它们用于控制工作方式,控制分段管理机制及分页管理机制的实施. 控制寄存器 CRx BIT31 BIT30—BIT12 BIT11—BIT5 BIT4 B ...

  9. 【转载】selenium with PhantomJs wait till page fully loaded?

    I use Selenium with Phantomjs, and want to get the page content after the page fully loaded. I tried ...

  10. 安装完ODTwithODAC112012,出现ORA-12560:TNS:协议适配器错误

    参考:http://blog.csdn.net/tan_yixiu/article/details/6762357 操作系统:windows2008 Enterprise 64位 开发工具:VS201 ...