LINK

题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点

思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交。判断相交先求叉积再用跨立实验。枚举每个线段的起始结束点作为直线起点终点遍历即可。

/** @Date    : 2017-07-12 14:35:44
* @FileName: POJ 3304 基础线段交判断.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#include <math.h>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct point
{
double x, y;
point(double _x, double _y){x = _x, y = _y;}
point(){}
point operator -(const point &b) const
{
return point(x - b.x, y - b.y);
}
double operator *(const point &b) const
{
return x * b.x + y * b.y;
}
double operator ^(const point &b) const
{
return x * b.y - y * b.x;
}
}; struct line
{
point s, t;
line(){}
line(point ss, point tt){s = ss, t = tt;}
}; double cross(point a, point b)
{
return a.x * b.y - a.y * b.x;
} double xmult(point p1, point p2, point p0)
{
return (p1 - p0) ^ (p2 - p0);
} double distc(point a, point b)
{
return sqrt((b - a) * (b - a));
} bool opposite(point p1, point p2, line l)
{
double t = xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2);
printf("%.8lf\n", t);
return xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2) < -eps;
} //线段与线段交
bool Sjudgeinter(line a, line b)
{
return opposite(b.s, b.t, a) && opposite(a.s, a.t, b);
} int sign(double x)
{
if(fabs(x) < eps)
return 0;
if(x < 0)
return -1;
return 1;
}
//线段与直线交 a为直线
bool judgeinter(line a, line b)
{
//return opposite(b.s, b.t, a);
/*double x = xmult(a.s, a.t, b.s);
double y = xmult(a.s, a.t, b.t);
printf("@%.4lf %.4lf\n", x, y);*/
return sign(xmult(a.s, a.t, b.s)) * sign(xmult(a.s, a.t, b.t)) <= 0;
} int n;
point p[200];
line l[200];
bool check(line li)
{
if(sign(distc(li.s, li.t)) == 0)
return 0;
for(int i = 0; i < n; i++)
if(judgeinter(li, l[i]) == 0)
return 0;
return 1;
} int main()
{
int T;
cin >> T;
while(T--)
{
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
double x1, x2, y1, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
p[i] = point(x1, y1), p[i + 1] = point(x2, y2);
l[i] = line(p[i], p[i + 1]);
}
int ans = 0;
/*for(int i = 0; i < n * 2; i++)//不知道为啥直接枚举所有点就是WA
{
for(int j = 0; j < n * 2; j++)
{
if(ans)
break;
if(i == j || distc(p[i],p[j]) < eps)
continue;
line tmp = line(p[i], p[j]);
if(p[i].x == p[j].x && p[i].y == p[j].y)//考虑到枚举直线为重合点
continue;
int flag = 0;
for(int k = 0; k < n; k++)
{
if(k == 1)
printf("**");
if(judgeinter(tmp, l[k]) == 0)
{
flag = 1;
break;
} }
if(!flag)
ans = 1;
cout << i << "~"<< j << endl;
}
}*/
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(check(line(l[i].s, l[j].s))
|| check(line(l[i].s,l[j].t))
|| check(line(l[i].t, l[j].s))
|| check(line(l[i].t, l[j].t)) )
{
ans = 1;
break;
}
}
}
printf("%s\n", ans?"Yes!":"No!");
}
return 0;
}
//询问是否存在直线,使得所有线段在其上的投影拥有公共点
//如果存在公共区域,对其作垂线,那么其垂线必定过所有的线段
//那么转换为是否存在直线 与所有线段都相交

POJ 3304 Segments 基础线段交判断的更多相关文章

  1. POJ 3304 Segments (叉乘判断线段相交)

    <题目链接> 题目大意: 给出一些线段,判断是存在直线,使得该直线能够经过所有的线段.. 解题思路: 如果有存在这样的直线,过投影相交区域作直线的垂线,该垂线必定与每条线段相交,问题转化为 ...

  2. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  3. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  4. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  5. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

  6. [poj] 3304 Segments || 判断线段相交

    原题 给出n条线段,判断是否有一条直线与所有线段都有交点 若存在这样一条直线,那么一定存在一条至少过两个线段的端点的直线满足条件. 每次枚举两条线段的两个端点,确定一条直线,判断是否与其他线段都有交点 ...

  7. Segments POJ 3304 直线与线段是否相交

    题目大意:给出n条线段,问是否存在一条直线,使得n条线段在直线上的投影有至少一个公共点. 题目思路:如果假设成立,那么作该直线的垂线l,该垂线l与所有线段相交,且交点可为线段中的某两个交点 证明:若有 ...

  8. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  9. poj 3304 Segments(解题报告)

    收获:举一反三:刷一道会一道 1:思路转化:(看的kuangbin的思路) 首先是在二维平面中:如果有很多线段能够映射到这个直线上并且至少重合于一点,充要条件: 是过这个点的此条直线的垂线与其他所有直 ...

随机推荐

  1. 《Linux内核与分析》第六周

    20135130王川东 1.操作系统的三大管理功能包括:进程管理,内存管理,文件系统. 2. Linux内核通过唯一的进程标识PID来区别每个进程.为了管理进程,内核必须对每个进程进行清晰的描述,进程 ...

  2. 《我是IT小小鸟》读后感

    <我是IT小小鸟>读后感 说实话,我根本不喜欢看这本书,要不是因为老师要求我也不会去看的,其实当老师提起这本书的时候我还是有点兴趣,去看的,可是看了很多后,觉得这根本不适合我,里面说的都是 ...

  3. JSON.parse与eval

    文章:JSON.parse 与 eval() 对于解析json的问题 json的标准格式:{"name":"jobs"}   名字和值都必须用双引号引起来.

  4. Alpha事后诸葛亮(团队)

    设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件要解决用手机使没有指纹验证硬件的电脑可以利用指纹进行文件的加密.定义的很清楚.我们针对的是 ...

  5. Spring管理过滤器:org.springframework.web.filter.DelegatingFilterProxy

    配置web.xml <filter>        <filter-name>springSecurityFilterChain</filter-name>     ...

  6. OSG学习:LOD、数据分页、动态调度

    LOD(level of detail):是指根据物体模型的结点在显示环境中所处的位置和重要度,决定物体渲染的资源分配,降低非重要物体的面数和细节度,从而获得高效率的渲染运算.在OSG的场景结点组织结 ...

  7. Windows配置java运行环境的步骤

    jdk不同版本下载地址:http://www.oracle.com/technetwork/java/javase/archive-139210.html 1.下载你适合你电脑的jdk版本,链接如上, ...

  8. ICPCCamp 2017 I Coprime Queries

    给出一个长度为\(n\)的正整数序列\(a\),\(m\)次询问\(l,r,x\),问\(max\{i|i\in[l,r],gcd(a_i,x)=1\}\). \(n,m,a_i\le 10^5\). ...

  9. [四]SpringBoot 之 捕捉全局异常

    在class注解上@ControllerAdvice, 在方法上注解上@ExceptionHandler(value = Exception.class),具体代码如下: package me.shi ...

  10. VSS2005设置不输入密码直接登录VSS

    1.登录管理员 2.Tools-->Options-->General -->Use network name for automatic user log in  去掉勾选不自动登 ...