题面: bzoj luogu

NOI2010能量采集 题解

读完题之后我们发现在每个产生贡献的点\((x1,y1)\)中,它与原点之间的点\((x2,y2)\)都满足\(x2|x1\),\(y2|y1\)。现在我们要求它与原点之间点的个数,也就是这个点\((x,y)\)最大可以被除以多少——肯定是\(gcd(x1,y1)\)啊。

所以我们就知道怎么做啦:\(2\times \sum_{i=1}^n\times \sum_{j=1}^m\times gcd(i,j)-n\times m\)

中间的那个可以用莫比乌斯反演做!

设f(i)表示x,y最大公约数为i的个数。设F(i)表示x,y存在i这个公约数。

因为\(f(i)=sum_{i|j}\times F(j)\),上限为\(min(n,m)\)

所以\(F(i)=\sum_{i|j}\mu(j/i)\times f(j)\)

f(i)不太好做,但是F(i)却很容易算出来(具体怎么算大家可以参考HDU GCD这个题)

所以我们预处理出\(\mu\)函数的值,然后按照套路做就可以啦qwq

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define MAXN 100010
using namespace std;
int n,m,cnt;
int vis[MAXN],mu[MAXN],prime[MAXN];
long long ans;
long long f[MAXN],F[MAXN];
inline void get_mu()
{
vis[1]=mu[1]=1;
for(int i=2;i<=MAXN;i++)
{
if(vis[i]==0) mu[i]=-1,prime[++cnt]=i;
for(int j=1;j<=cnt&&i*prime[j]<=MAXN;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else {mu[i*prime[j]]=0;break;}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
get_mu();
if(n>m) swap(n,m);
for(int i=1;i<=n;i++) F[i]=1ll*(n/i)*(m/i);
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j+=i)
f[i]+=1ll*mu[j/i]*F[j];
for(int i=1;i<=n;i++) ans+=1ll*f[i]*i;
ans=ans*2-1ll*n*m;
printf("%lld\n",ans);
return 0;
}

[NOI2010]能量采集(莫比乌斯反演)的更多相关文章

  1. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  2. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  3. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  4. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  5. bzoj 2005 能量采集 莫比乌斯反演

    我们要求的是∑ni=1∑mj=1(2×gcd(i,j)−1) 化简得2×∑ni=1∑mj=1gcd(i,j)−n×m 所以我们现在只需要求出∑ni=1∑mj=1gcd(i,j)即可 ∑ni=1∑mj= ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. [Noi2010]能量采集 (莫比乌斯反演)

    [Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能 ...

  8. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  9. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

随机推荐

  1. TrinityCore3.3.5编译过程-官方指导-踩坑总结

    官方指导:主页->how to compile -> windows 指导文档写得很详细,但有不少细节点没提到,这里把过程简化总结,说明重点,及易坑点 1,安装需求 编译工具:cmake, ...

  2. [iOS]swift之UITableView添加通过xib创建的headerView坑爹问题

    情景是这样的,我UITableView添加了一个HeaderView,这个HeaderView是通过xib创建,是UIView.出来的结果却出乎意料,UITableView的Cell最顶部的几个被He ...

  3. C6 P5.2

    引用自 http://snippetinfo.net/media/117 下载源:php-5.2-x64.zip wget 源包.zip yum -y install httpd libXpm.so. ...

  4. 选择性导出excel表中内容

    package com.huawei.utils; import java.io.FileNotFoundException;import java.io.FileOutputStream;impor ...

  5. Unity Remote 5 使用

    从哪里下载,我是从应用商店里下载的 一. Android版 首先应该确保安装了最新的 Android SDK(这对于在设备上设置端口转发非常必要). 然后,使用 USB 连接线连接设备与电脑,并启动U ...

  6. Java基础知识常识总结

    Java基础知识常识总结 1.面向对象的特征以及对他的理解? 封装,继承,多态,如果再增加一条就是抽象. 2.Object有几种方法,分别是什么? 在JDK1.5中的11种方法,分别有: toStri ...

  7. Github 使用的Markdown语言

    简介 官方站点:http://daringfireball.net/projects/markdown/syntax 中文介绍:http://www.worldhello.net/gotgithub/ ...

  8. EZOJ #226

    传送门 分析 我们可以建一个k层图,把dp转移的三维对应到每个点上,每个第k层点连向0层点 我们让第0层点为实点其余为虚点,只要碰到虚点就dfs到他连得所有实点再将实点入队即可 代码 #include ...

  9. [Groovy]获取当前活动的Environment,获取response中节点的name和节点的value

    import com.eviware.soapui.support.GroovyUtils import com.eviware.soapui.support.XmlHolder import org ...

  10. java 中toString()方法详解

    1.toString()方法 Object类具有一个toString()方法,你创建的每个类都会继承该方法.它返回对象的一个String表示,并且对于调试非常有帮助.然而对于默认的toString() ...