洛谷P3414 SAC#1 - 组合数
P3414 SAC#1 - 组合数
- 218通过
- 681提交
- 题目提供者ProjectWTA
- 标签
- 难度普及/提高-
- 时空限制1s / 128MB
提交 讨论 题解
最新讨论更多讨论
- 讨论区出bug了
- 题目错啦
- 其实是很简单的题
题目背景
本题由世界上最蒟蒻最辣鸡最撒比的SOL提供。
寂月城网站是完美信息教室的官网。地址:http://191.101.11.174/mgzd 。
题目描述
辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌!
今天他萌上了组合数。现在他很想知道simga(C(n,i))是多少;其中C是组合数(即C(n,i)表示n个物品无顺序选取i个的方案数),i取从0到n所有偶数。
由于答案可能很大,请输出答案对6662333的余数。
输入输出格式
输入格式:
输入仅包含一个整数n。
输出格式:
输出一个整数,即为答案。
输入输出样例
3
4
说明
对于20%的数据,n <= 20;
对于50%的数据,n <= 1000;
对于100%的数据,n <= 1 000 000 000 000 000 000 (10^18)
分析:先上结论:答案为2^(n-1),为什么是这个呢?如果i能取奇数,那么答案为2^n,因为我们从n个数中取0个,取1个,取2个...取n个,相当于取任意多个,每个位置可以取或者不去,那么根据乘法原理,答案就为2^n,如果i只能为偶数,就会有一半的位置取不了,答案就为原答案的1/2.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n; const int mod = ;
typedef long long LL; LL fun(LL x, LL n)
{
LL res = ;
while (n > )
{
if (n & )
res = (res*x) % mod;
x = (x*x) % mod;
n >>= ;
}
return res % mod;
} int main()
{
scanf("%lld", &n);
printf("%lld\n",fun(, n - )); return ;
}
洛谷P3414 SAC#1 - 组合数的更多相关文章
- 洛谷——P3414 SAC#1 - 组合数
P3414 SAC#1 - 组合数 题目背景 本题由世界上最蒟蒻最辣鸡最撒比的SOL提供. 寂月城网站是完美信息教室的官网.地址:http://191.101.11.174/mgzd . 题目描述 辣 ...
- P3414 SAC#1 - 组合数 题解
https://www.luogu.org/problemnew/show/P3414(题目传送) 这道题提醒大家一定要认真审题.看清楚后发现n的数据范围稍微小于long long类型的范围(看不清被 ...
- P3414 SAC#1 - 组合数
题目背景 本题由世界上最蒟蒻最辣鸡最撒比的SOL提供. 寂月城网站是完美信息教室的官网.地址:http://191.101.11.174/mgzd . 题目描述 辣鸡蒟蒻SOL是一个傻逼,他居然觉得数 ...
- 洛谷P4492 [HAOI2018]苹果树(组合数)
题意 题目链接 Sol 有点自闭,.我好像对组合数一窍不通(~~~~) Orz shadowice // luogu-judger-enable-o2 #include<bits/stdc++. ...
- 洛谷——P1869 愚蠢的组合数
P1869 愚蠢的组合数 题目描述 最近老师教了狗狗怎么算组合数,狗狗又想到了一个问题... 狗狗定义C(N,K)表示从N个元素中不重复地选取K个元素的方案数. 狗狗想知道的是C(N,K)的奇偶性. ...
- 洛谷 P2518 [HAOI2010]计数 (组合数)
题面 luogu 题解 本来想练数位dp的,结果又忍不住写了组合数.. 去掉一个\(0\)可以看作把\(0\)移到前面去 那么题目转化为 \(n\)有多少个排列小于\(n\) 强制某一位比\(n\)的 ...
- 洛谷P3926 SAC E#1 - 一道不可做题 Jelly【模拟/细节】
P3926 SAC E#1 - 一道不可做题 Jelly [链接]:https://www.luogu.org/problem/show?pid=3926 题目背景 SOL君(炉石主播)和SOL菌(完 ...
- 洛谷—— P1869 愚蠢的组合数
https://www.luogu.org/problemnew/show/1869 题目描述 最近老师教了狗狗怎么算组合数,狗狗又想到了一个问题... 狗狗定义C(N,K)表示从N个元素中不重复地选 ...
- luogu P3414 SAC#1 - 组合数(组合数学)
题意 求sigma(C(n,i))其中C是组合数(即C(n,i)表示n个物品无顺序选取i个的方案数),i取从0到n所有偶数. 由于答案可能很大,请输出答案对6662333的余数. (n<=101 ...
随机推荐
- Java解惑之TreeSet是如何去重的
引言: 最近在处理一个问题,大致是这个样子,从数据库里面取出一个集合,取出来的数据放到一个JavaBean里面.结果得到的集合长度为1. TreeSetSet的一个实现,默认实现排序:故TreeSet ...
- K-近邻算法入门
K-近邻算法的直观理解就是:给定一个训练集合,对于新的实例,在训练集合中找到k个与该实例最近的邻居,然后根据“少数服从多数”原则判断该实例归属于哪一类,又称“随大流” K-近邻算法的三大要素:K值得选 ...
- ArrayList中ensureCapacity的使用与优化
对于ArrayLis中有一个方法ensureCapacity(int n),这个方法可以对ArrayList低层的数组进行扩容,显示的调用这个函数,如果参数大于低层数组长度的1.5倍,那么这个数组的容 ...
- ES6的新特性(17)——Generator 函数的异步应用
Generator 函数的异步应用 异步编程对 JavaScript 语言太重要.Javascript 语言的执行环境是“单线程”的,如果没有异步编程,根本没法用,非卡死不可.本章主要介绍 Gener ...
- Pyhont:内建函数enumerate
1.enumerate的中文意思 2.enumerate参数为可遍历的变量,如字符串.列表等,其返回值为enumerate类. 3.enumerate多用在for循环中得到计数 . [注]:若在for ...
- 引用百度bcebos jar 503问题
最近使用jeecms管理公司各个站点,关于附件部分采用bos进行上传处理. 在引用bosjar的时候,出现503问题,打断点打印异常堆栈信息,也获取不到.后来使用watch,发现BosClientCo ...
- 转 使用Docker部署 spring-boot maven应用
转自:https://blog.csdn.net/u011699931/article/details/70226504/ 使用Docker部署 spring-boot maven应用 部署过程分为以 ...
- n元一维向量向左循环移位i的几种算法
1.最简单的算法借助于一个n元的中间向量在n步时间内完成 时间复杂度:O(n) 空间复杂度O(n) void shift_easy(int arr[], int _arr[], int n, int ...
- laravel 字段映射问题,表单中提交字段与数据表中字段不一致
在遇到提交表单时,表单中的name属性与数据表中的字段不一致,报错, 解决方法: 参考1:提交表单的时候,表单的name属性和数据表字段名称是一样的,这样有什么不妥么? 你数据库的信息给前端透露得越多 ...
- Thread的run()与start()的区别
java的线程是通过java.lang.Thread类来实现的.VM启动时会有一个由主方法所定义的线程.可以通过创建Thread的实例来创建新的线程.每个线程都是通过某个特定Thread对象所对应的方 ...