Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 41143   Accepted: 14068

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

Source

 
思路:就是用所有点构成的凸包,然后将凸包向外推L米就可以了,可以知道将墙直接外推L米,墙的长度没变,但是两堵墙之间会有缝隙,这个如果用直线相连
就会浪费,所以直接用圆弧相连,半径为L,所以:总长度 = 原凸包周长 + 所有圆弧的长度。其实所有圆弧的长度之和会构成一个半径为L的圆,所以最后的结果: 总长度 = 原凸包周长 + 圆的周长(R=L)。关于为什么所有圆弧会拼成一个原,我一也是看了许多博客慢慢理解的,证明如下:
 

证明:

先从简单的例子看起:假设现在的凸包有四个顶点构成,可以就一个顶点来观察,我们可以看到此处的周角由四个部分组成:2个直角,一个凸包内角,一个圆弧对应的圆心角。

同理每个顶点都有类似的关系,同时周角固定为360度,而凸包内角和为(4-2)*180 ;

所以总的圆弧对应的圆心角 = 4个周角 - 4 * 2个直角 - 4个凸包内角 = 4 * 360 - 4 * 2 * 90 - (4-2)*180 = 1440-720-360 =360度。

现在推广到n个顶点的凸包:

则所有内角和  =  周角 * n - n * 2个直角 - (n-2)*180 = 360*n - n *180 - n*180 + 360 = 360度。

故对于任意的凸包,所有的圆弧对应的圆心角之和都为360度,它们构成一个完整的圆。

ac代码如下:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
#define N 10005
const double PI = acos(-1.0); int n,tot;//n为二维平面上点的个数,tot为凸包上点的个数
struct node {
int x,y;
}a[N],p[N]; //p[]用来储存凸包 double dis(node a1,node b1){ //两点间距离公式
return sqrt((a1.x-b1.x)*(a1.x-b1.x)+(a1.y-b1.y)*(a1.y-b1.y) + 0.00);
} //叉积:返回结果为正说明p2在向量p0p1的左边(三点构成逆时针方向);
//为负则相反;为0则三点共线(叉积的性质很重要)
double multi(node p0,node p1,node p2){ //
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} //极角排序:极角排序是根据坐标系内每一个点与x轴所成的角,逆时针比较。按照角度从小到大的方式排序
int cmp(node p1,node p2){ //极角排序;
int x=multi(p1,p2,a[0]);
if(x>0||(x==0&&dis(p1,a[0])<dis(p2,a[0])))
return 1;
return 0;
} void Graham(){ //求凸包
int k=0;
for(int i=0;i<n;i++) //找到最下最左的一个点
if(a[i].y<a[k].y||(a[i].y==a[k].y&&a[i].x<a[k].x))
k=i;
swap(a[0],a[k]); //将其设置为第一个点
sort(a+1,a+n,cmp);
tot=2,p[0]=a[0],p[1]=a[1]; //p[]模拟栈,用来储存凸包
for(int i=2;i<n;i++){
while(tot>1&&multi(p[tot-1],p[tot-2],a[i])>=0)
tot--; //右拐就回退
p[tot++]=a[i]; //左拐就放入
}
} double getArea(){
struct node b[3];
b[0] = p[0], b[1] = p[1], b[2] = p[2];
double area = 0;
for(int i = 2; i < tot; i++){
area += multi(b[0], b[1], p[i]) / 2.0;
b[1] = p[i];
}
return area;
} double getGirth(){
double rt = 0;
for(int i = 0; i < tot; i++){
rt += dis(p[i], p[(i+1)%tot]);
}
return rt;
} int main(){
double L;
while(cin >> n >> L){
tot = 0;
for(int i = 0; i < n; i++){
cin >> a[i].x >> a[i].y;
}
Graham();
double res = getGirth();
res += 2*PI*L;
cout << int(res + 0.5) << endl;
}
return 0;
}

  

81-POJ-Wall(计算几何)的更多相关文章

  1. POJ 1113 Wall(计算几何の凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  2. POJ 1556 计算几何+最短路

    代码1: #include<iostream> #include<stdio.h> #include<string> #include<string.h> ...

  3. POJ 2954-Triangle(计算几何+皮克定理)

    职务地址:POJ 2954 意甲冠军:三个顶点的三角形,给出,内部需求格点数. 思考:就像POJ 1265. #include <stdio.h> #include <math.h& ...

  4. poj 1410 计算几何

    /** 注意: 千万得小心..就因为一个分号,调了一个晚上... **/ #include <iostream> #include <algorithm> using name ...

  5. poj 2653 计算几何

    #include <iostream> #include <cstring> #include <algorithm> #include <cmath> ...

  6. poj 1269 计算几何

    /** 判断直线位置关系 **/ #include <iostream> #include <cmath> #include <cstdio> using name ...

  7. poj 3304 计算几何

    大意: 是否存在一条直线,使所有线段在直线上的投影至少交与一点 思路: 转换为是否存在一条直线与所有的线段相交,做这条直线的垂线,那么垂线即为所求 **/ #include <iostream& ...

  8. poj 2398 计算几何

    #include <iostream> #include<cstdio> #include<cstring> #include <algorithm> ...

  9. BZOJ 1113 Wall ——计算几何

    凸包第一题. 自己认为自己写的是Andrew 其实就是xjb写出来居然过掉了测试. 刚开始把pi定义成了int,调了半天 #include <map> #include <cmath ...

  10. POJ 3855 计算几何·多边形重心

    思路: 多边形面积->任选一个点,把多边形拆成三角,叉积一下 三角形重心->(x1+x2+x3)/3,(y1+y2+y3)/3 多边形重心公式题目中有,套一下就好了 计算多边形重心方法: ...

随机推荐

  1. java少包汇总

    1.在下载使用javax.mail的jar包时候,注意: 有的jar没有包含sun的实现,只包含了api,这类jar名称通常为javax.mail-api-x.x.x.jar,在使用smtp协议发邮件 ...

  2. (转)Linux查看CPU,硬盘,内存的大小

         分类: linux(21)  在Linux的桌面版本中,查看这些东西的确很方便,有图形化的工具可以使用.但是在Linux服务器版上,或者远程ssh连接的时候,就没有图形化的界面可以操作了.此 ...

  3. struts2学习(5)拦截器简介以及例子执行过程

    一.拦截器简介: 二.Struts2预定义拦截器&拦截器栈 在执行action之前和之后,拦截器进行了操作: 比如struts-default.xml中就有很多预定义的拦截器:   拦截器栈: ...

  4. 杂项:HTML5-3/3-技术要点

    ylbtech-杂项:HTML5-3/3-技术要点   1.返回顶部 1. 重要标记 <video>标记 定义和用法: </video> 标签定义视频,比如电影片段或其他视频流 ...

  5. ansible之感冒药

    Ansible简介安装 Ansible是一个综合的强大的管理工具,他可以对多台主机安装操作系统,并为这些主机安装不同的应用程序,也可以通知指挥这些主机完成不同的任务.查看多台主机的各种信息的状态等,a ...

  6. 将 .NET 任务作为 WinRT 异步操作公开

    转自:http://blogs.msdn.com/b/windowsappdev_cn/archive/2012/06/22/net-winrt.aspx 在博文深入探究 Await 和 WinRT ...

  7. C++ 11 自旋锁

    // Spin lock implementation. // BasicLockable. // Async-signal safe. // unlock() "synchronizes ...

  8. php-7.1和apache httpd-2.4.29 windows环境配置

    一.apaceh2.4配置 (一).修改apache2.4.29的httpd.conf安装目录文件,第38行 原Define SRVROOT "/Apache24" 修改为(你自己 ...

  9. .NET中使用unity实现aop

    Unity是一款知名的依赖注入容器,其支持通过自定义扩展来扩充功能.在Unity软件包内默认包含了一个对象拦截(Interception)扩展定义.本篇文章将介绍如何使用对象拦截功能来帮助你分离横切关 ...

  10. martin/docker-cleanup-volumes

    https://hub.docker.com/r/martin/docker-cleanup-volumes/