Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch – the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves’ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar’s tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree’s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree’s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

题解

线段树的合并,子树的逆序对与父亲交换没有关系,所以贪心合并即可。

 #include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define N 400007
#define M 4000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,sz,seg;
ll ans,cnt1,cnt2;
int val[N],l[N],r[N],rt[N];
int siz[M],ls[M],rs[M]; void readtree(int x)
{
val[x]=read();
if(!val[x])
{
l[x]=++sz;
readtree(l[x]);
r[x]=++sz;
readtree(r[x]);
}
}
void build(int &k,int l,int r,int val)
{
if(!k)k=++seg;
if(l==r){siz[k]=;return;}
int mid=(l+r)>>;
if(val<=mid)build(ls[k],l,mid,val);
else build(rs[k],mid+,r,val);
siz[k]=siz[ls[k]]+siz[rs[k]];
}
int merge(int x,int y)
{
if(!x)return y;
if(!y)return x;
cnt1+=(ll)siz[rs[x]]*siz[ls[y]];
cnt2+=(ll)siz[ls[x]]*siz[rs[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
siz[x]=siz[ls[x]]+siz[rs[x]];
return x;
}
void solve(int x)
{
if(!x)return;
solve(l[x]);solve(r[x]);
if(!val[x])
{
cnt1=cnt2=;
rt[x]=merge(rt[l[x]],rt[r[x]]);
ans+=min(cnt1,cnt2);
}
}
int main()
{
n=read();++sz;
readtree();
for(int i=;i<=sz;i++)
if(val[i])build(rt[i],,n,val[i]);
solve();
printf("%lld",ans);
}

bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并的更多相关文章

  1. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  2. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  3. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  4. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  5. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  6. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  7. [bzoj2212]Tree Rotations(线段树合并)

    解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...

  8. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  9. [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

    题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...

随机推荐

  1. WCF加密操作(包括证书和证书+帐号密码)

    WCF作为.net三大组件之一,伟大之处不用多说,但是其加密配置对于我这样的萌新来说还是颇有难度,因此将几天来的研究成果共享出来,与各位共勉~ 首先声明我的开发环境,Win10创意者更新 + Visu ...

  2. System.Web.Mvc.ModelValidationResult.cs

    ylbtech-System.Web.Mvc.ModelValidationResult.cs 1.程序集 System.Web.Mvc, Version=5.2.3.0, Culture=neutr ...

  3. 在菜单栏对应图标点击右键-关闭窗口,javaw.exe进程未关闭。

    问题: 可视化开发时,运行一个工程,总会生成一个javaw.exe进程. 关闭运行程序,javaw.exe还存在. 解决: 运行java工程时,会启动一个新的虚拟机来运行你的程序. 程序退出的时候,这 ...

  4. 《DSP using MATLAB》Problem 8.29

    来汉有一月,往日的高温由于最近几个台风沿海登陆影响,今天终于下雨了,凉爽了几个小时. 接着做题. %% ------------------------------------------------ ...

  5. Swagger发布服务器时错误 500 : { "Message": "An error has occurred." }

    在做Web API的文档自动生成时,本机调试都正常,发布到服务器上出现500错误 500 : { "Message": "An error has occurred.&q ...

  6. Ubuntu时间管理方法

    1. date 命令主要用于显示以及修改系统时间 2. hwclock 命令用于查看设置硬件时间,以及同步硬件时间与系统时间 # 显示硬件时间hwclock # 设置硬件时间hwclock -set ...

  7. 从github下载项目出现yes/no的选项,无法下载项目

    解决办法: # 本地执行: ssh-keygen # 将id_rsa_pub文件中公钥拷贝到github上的ssh认证 oodful@:~/Volumes/Term2 :::$cat ~/.ssh/i ...

  8. extern关键字及C\C++相互调用

    extern关键字主要修饰变量或函数,表示该函数可以跨文件访问,或者表明该变量在其他文件定义,在此处引用. 1.extern修饰变量 (1)如果某变量int m在a.c中定义声明,则其他b.c文件访问 ...

  9. js阻止冒泡和默认事件

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 玩转python爬虫之正则表达式

    玩转python爬虫之正则表达式 这篇文章主要介绍了python爬虫的正则表达式,正则表达式在Python爬虫是必不可少的神兵利器,本文整理了Python中的正则表达式的相关内容,感兴趣的小伙伴们可以 ...