bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description
Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch – the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves’ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).
The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar’s tree that can be obtained by rotations.
现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。
Input
In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree’s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree’s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).
第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x
1<=n<=200000
Output
In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.
一行,最少逆序对个数
Sample Input
0
0
3
1
2
Sample Output
题解
线段树的合并,子树的逆序对与父亲交换没有关系,所以贪心合并即可。
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define N 400007
#define M 4000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,sz,seg;
ll ans,cnt1,cnt2;
int val[N],l[N],r[N],rt[N];
int siz[M],ls[M],rs[M]; void readtree(int x)
{
val[x]=read();
if(!val[x])
{
l[x]=++sz;
readtree(l[x]);
r[x]=++sz;
readtree(r[x]);
}
}
void build(int &k,int l,int r,int val)
{
if(!k)k=++seg;
if(l==r){siz[k]=;return;}
int mid=(l+r)>>;
if(val<=mid)build(ls[k],l,mid,val);
else build(rs[k],mid+,r,val);
siz[k]=siz[ls[k]]+siz[rs[k]];
}
int merge(int x,int y)
{
if(!x)return y;
if(!y)return x;
cnt1+=(ll)siz[rs[x]]*siz[ls[y]];
cnt2+=(ll)siz[ls[x]]*siz[rs[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
siz[x]=siz[ls[x]]+siz[rs[x]];
return x;
}
void solve(int x)
{
if(!x)return;
solve(l[x]);solve(r[x]);
if(!val[x])
{
cnt1=cnt2=;
rt[x]=merge(rt[l[x]],rt[r[x]]);
ans+=min(cnt1,cnt2);
}
}
int main()
{
n=read();++sz;
readtree();
for(int i=;i<=sz;i++)
if(val[i])build(rt[i],,n,val[i]);
solve();
printf("%lld",ans);
}
bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并的更多相关文章
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
- [bzoj2212]Tree Rotations(线段树合并)
解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...
- BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...
- [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对
题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...
随机推荐
- 杂项-公司:Axway
ylbtech-杂项-公司:Axway Axway 公司是法国Sopra 集团从事应用系统集成(EAI/B2Bi)软件及相关咨询服务业务的全资子公司.Axway公司成立于1980年,总部位于美国凤凰城 ...
- PAT甲级——A1099 Build A Binary Search Tree
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- css3之2D 转换
浏览器支持 表格中的数字表示支持该属性的第一个浏览器版本号. 紧跟在 -webkit-, -ms- 或 -moz- 前的数字为支持该前缀属性的第一个浏览器版本号. Chrome 和 Safari 要求 ...
- drools跳转出现错误问题(400)
400 Sorry, a technical error occurred. Please contact a system administrator. 今天drools的管理平台tomcat部署完 ...
- 嘴巴题6 BZOJ3450JoyOI1952 Easy
Time Limit: 10 Sec Memory Limit: 128 MB Submit: 936 Solved: 698 [Submit][Status][Discuss] Descriptio ...
- Leetcode279. Perfect Squares完全平方数
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释: 12 ...
- Linux下使用SSH命令行传输文件到远程服务器
目标:CentOS 7 调整 home分区 扩大 root分区 总体过程: 把/home内容备份,然后将/home文件系统所在的逻辑卷删除,扩大/root文件系统,新建/home ,恢复/home内容 ...
- Odoo文档管理/知识管理应用实践 - 上传附件
测试环境: Odoo8.0 Odoo中的文档管理/知识管理可用于保存采购.销售.生产等一系列业务流程中产生的文件.凭证,可关联到具体的每一笔业务操作:也能用于管理公司的合同.资料,创建知识库以分享内部 ...
- js的简单介绍和相关的必备常识
一.概念 1.js是JavaScript的缩写,是运行在浏览器端或服务端的依附于页面的脚本语言. 2.js的学习分为:ECMA语法.Dom网页对象模型.Bom浏览器的对象模型 3.ECMA是浏览器厂商 ...
- Interface Builder: What are the UIView's Layout iOS 6/7 Deltas for?
up vote57down votefavorite 19 I just noticed the iOS 6/7 Delta property found under the UIView's str ...