Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch – the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves’ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar’s tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree’s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree’s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

题解

线段树的合并,子树的逆序对与父亲交换没有关系,所以贪心合并即可。

 #include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define N 400007
#define M 4000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,sz,seg;
ll ans,cnt1,cnt2;
int val[N],l[N],r[N],rt[N];
int siz[M],ls[M],rs[M]; void readtree(int x)
{
val[x]=read();
if(!val[x])
{
l[x]=++sz;
readtree(l[x]);
r[x]=++sz;
readtree(r[x]);
}
}
void build(int &k,int l,int r,int val)
{
if(!k)k=++seg;
if(l==r){siz[k]=;return;}
int mid=(l+r)>>;
if(val<=mid)build(ls[k],l,mid,val);
else build(rs[k],mid+,r,val);
siz[k]=siz[ls[k]]+siz[rs[k]];
}
int merge(int x,int y)
{
if(!x)return y;
if(!y)return x;
cnt1+=(ll)siz[rs[x]]*siz[ls[y]];
cnt2+=(ll)siz[ls[x]]*siz[rs[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
siz[x]=siz[ls[x]]+siz[rs[x]];
return x;
}
void solve(int x)
{
if(!x)return;
solve(l[x]);solve(r[x]);
if(!val[x])
{
cnt1=cnt2=;
rt[x]=merge(rt[l[x]],rt[r[x]]);
ans+=min(cnt1,cnt2);
}
}
int main()
{
n=read();++sz;
readtree();
for(int i=;i<=sz;i++)
if(val[i])build(rt[i],,n,val[i]);
solve();
printf("%lld",ans);
}

bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并的更多相关文章

  1. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  2. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  3. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  4. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  5. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  6. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  7. [bzoj2212]Tree Rotations(线段树合并)

    解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...

  8. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  9. [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

    题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...

随机推荐

  1. iOS开发CoreData的简单使用

    1.简介 CoreData是iOS5后,苹果提供的原生的用于对象化管理数据并且持久化的框架.iOS10苹果对CoreData进一步进行了封装,而且效率更高!相关类的简单介绍: NSManagedObj ...

  2. 接口Interface解耦的理解

    定义一个接口 磁盘 interface Disk(){   void save(File file);   } U盘和硬盘都是磁盘,都实现这个接口 class UDisk implement Disk ...

  3. PAT甲级——【牛客练习题100】

    题目描述 Given N rational numbers in the form "numerator/denominator", you are supposed to cal ...

  4. 03_Sklearn的安装

    1.Scikit-learn库介绍:包含许多知名的机器学习算法的实现,文档完善.容易上手,丰富的API. 2.安装:创建一个基于Python3的虚拟环境(可以在已有的虚拟环境中):mkvirtuale ...

  5. Diff- Linux必学的60个命令

    1.作用 diff命令用于两个文件之间的比较,并指出两者的不同,它的使用权限是所有用户. 2.格式 diff [options] 源文件 目标文件 3.[options]主要参数 -a:将所有文件当作 ...

  6. ip-up脚本参数

    pppoe连接建立后,系统自动调用/etc/ppp/ip-up脚本. 其参数如下面文件所示,第4个参数是系统获得的动态ip.#!/bin/bash## Script which handles the ...

  7. Luogu P1429 平面最近点对(加强版)(分治)

    P1429 平面最近点对(加强版) 题意 题目描述 给定平面上\(n\)个点,找出其中的一对点的距离,使得在这\(n\)个点的所有点对中,该距离为所有点对中最小的. 输入输出格式 输入格式: 第一行: ...

  8. parameter–precharge, tRCD and tRAS

    以下描述来自wikipeida : https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory 几点总结: (1) 每 ...

  9. JZOJ100045 【NOIP2017提高A组模拟7.13】好数

    题目 题目大意 首先有一个定义: 对于一个数,如果和它互质的数可以组成一个等差数列,那么这个数叫"好数". 现在给你一个数列,有三种操作: 1.询问一段区间内的好数的个数. 2.将 ...

  10. 我是如何在实际项目中解决MySQL性能问题

    可能是本性不愿随众的原因,我对于程序员面试中动辄就是考察并发上千万级别的QPS向来嗤之以鼻,好像国内的应用都是那么多用户量一样,其实并发达到千万,百万以上的应用能有几个? 绝大多数的程序员面临的只是解 ...