bzoj 4386: [POI2015]Wycieczki

这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了好长时间……

先说一下超级汇点的计数吧,先说结论:

1.将所有点(此题中只有一级点)向一个超级汇点0连边,将矩阵乘n次,相应的f[i][j]即为从i到j的走n步方案数,f[i][0]为i到0走n步的方案数,若在给他乘一个ans矩阵(ans在前),则f[0][0]-n(点数)为所有长度等于n(指数)的路径的方案数。ans矩阵为0向所有其他点连边。

2.若在1中,将0想自己连边,则每次相乘都会积累,最终得出的即为所有长度小于等于n的路径方案数。

具体可以这样理解:

ans矩阵相当于从超级汇点出发走一步,每乘一个base矩阵,相当于走一步,乘了n次后,相当于走n步,但是还要再乘一个base,相当于各点回到0,而计数器中仍保留着从0走出的方案数,此时f[0][0]-点数即为答案。(这种问题自己手模一下会更容易理解吧)。

然后是题解:

边权只有1,2,3三种,考虑拆点(在‘迷路’中也用到了同样的方法),将一个点分为三级,$get(int po,int w){return (po-1)*3+w;}$,将每个点的第一级向第二级连边,第二级向第三级连边,对于一条a->b,长度为w的边,从a的第w级向b的第一级连长度为1的边。

代码实现:

     for(int i=;i<=m;i++)
{
a=read(),b=read(),c=read();
cs.m[get(a,c)][get(b,)]++;
}
for(int i=;i<=n;i++)
{
cs.m[get(i,)][get(i,)]++;
cs.m[get(i,)][get(i,)]++;
}

这样就得到了一个初始矩阵,构造出ans矩阵,显然可以二分枚举长度解决,但是复杂度比较高会T,考虑倍增,提前预处理出初始矩阵乘$2^i$后的矩阵,像LCA那样搞就可以了。

然而这道题还有几个坑点:

方案数乘的时候会爆longlong(如果你打的恶心点连__int128都会爆),可以加判断,个人感觉比较麻烦,于是就用了double,还会爆?丝毫不慌还有long double。

然后就T了,用lemon测了一下,跑了一百多秒,好在都跑对了,其实这不是long double的锅,和我自带的大常数关系也不大,在预处理倍增数组时我固定给他求到了65,导致时间比较长,其实可以记录一下:

 for(int i=;i<=;i++,imax++){F[i]=F[i-]*F[i-];if((ans*F[i]).count()>k)break;}

然后就A了,跑得还挺快。其实我还是搞不懂为啥会差这么多,固定求到65复杂度也是$n^3log_n$啊……

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N n*3
#define LD long double
#define LL long long
using namespace std;
int n,m;LL k;
struct jz
{
LD m[121][121];
LD count() {return m[0][0]-n;}
}cs,ans,F[70];
jz operator * (jz &a,jz &b)
{
jz ans;
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
ans.m[i][j]=0;
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
for(int k=0;k<=N;k++)
ans.m[i][j]+=a.m[i][k]*b.m[k][j];
return ans;
}
inline int get(const register int po,const register int w){return (po-1)*3+w;}
inline LL read()
{
LL s=0;char a=getchar();
while(a<'0'||a>'9')a=getchar();
while(a>='0'&&a<='9'){s=s*10+a-'0';a=getchar();}
return s;
}
signed main()
{
// freopen("10.in","r",stdin); n=read(),m=read(),k=read();
int a,b,c;
for(int i=1;i<=m;i++)
{
a=read(),b=read(),c=read();
cs.m[get(a,c)][get(b,1)]++;
}
for(int i=1;i<=n;i++)
{
cs.m[get(i,1)][get(i,2)]++;
cs.m[get(i,2)][get(i,3)]++;
}
LL imax=1;
cs.m[0][0]=1;
for(int i=1;i<=n;i++)cs.m[get(i,1)][0]++;
for(int i=1;i<=n;i++)ans.m[0][get(i,1)]=1;
F[0]=cs;
for(int i=1;i<=65;i++,imax++){F[i]=F[i-1]*F[i-1];if((ans*F[i]).count()>k)break;}
if((ans*F[imax]).count()<k){cout<<-1<<endl;return 0;}
LL num=0;
for(int i=imax;i>=0;i--)
{
jz tm=ans*F[i];
if(tm.count()<k){num+=1ll<<i;ans=ans*F[i];}
}
cout<<num<<endl;
}

bzoj 4386: [POI2015]Wycieczki的更多相关文章

  1. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  2. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  3. BZOJ 4384: [POI2015]Trzy wieże

    4384: [POI2015]Trzy wieże Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 217  Solved: 61[Submit][St ...

  4. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  5. BZOJ 3747 POI2015 Kinoman 段树

    标题效果:有m点,每个点都有一个权值.现在我们有这个m为点的长度n该序列,寻求区间,它仅出现一次在正确的点区间内值和最大 想了很久,甚至神标题,奔说是水的问题--我醉了 枚举左点 对于每个请求留点右键 ...

  6. BZOJ 4380 [POI2015]Myjnie | DP

    链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...

  7. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  8. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  9. BZOJ 3747 POI2015 Kinoman

    因为上午没有准备够题目,结果发现写完这道题没题可写了QAQ 又因为这道题范围是100w,我写了发线段树,以为要T,上午就花了一个小时拼命卡常数 结果下午一交居然过了QAQ 我们考虑枚举L,求最大R使得 ...

随机推荐

  1. nslookup查不到数据

    ch查不到数据 换一个ip就可以了,什么原理?

  2. Pull Request的过程、基于git做的协同开发、git常见的一些命令、git实现代码的review、git实现版本的管理、gitlab、GitHub上为开源项目贡献代码

    前言: Pull Request的流程 1.fork 首先是找到自己想要pull request的项目, 然后点击fork按钮,此时就会在你的仓库中多出来一个仓库,格式是:自己的账户名/想要pull ...

  3. new 在C++ 中的用法

    我对C++一无所知 看参考手册 来看一下参考手册,总共有三种用法 下面是网站上给出的例子 // operator new example #include <iostream> // st ...

  4. 验证python中函数传参是引用传递

    定义: 值传递(pass by value)是指在调用函数时将实际参数复制一份传递到函数中,这样在函数中如果对参数进行修改,将不会影响到实际参数. 引用传递(pass by reference)是指在 ...

  5. leetcode 60-80 easy

    66.Plus One Given a non-empty array of digits representing a non-negative integer, plus one to the i ...

  6. 第十章—DOM(三)——Text类型

    文本节点由TEXT类型表示,包含纯文本内容,Text节点具有以下特征: 看看下面的代码: div元素开始和结束标签只要存在内容,就会创建一个文本节点.可以使用以下代码来访问元素的这些文本子节点: 访问 ...

  7. 使用python爬去国家民政最新的省份代码的程序,requests,beautifulsoup,lxml

    使用的python3.6 民政网站,不同年份数据可能页面结构不一致,这点踩了很多坑,这也是代码越写越长的原因. 如果以后此段代码不可用,希望再仔细学习下 页面结构是否发生了变更. # -*- codi ...

  8. windows上安装Anaconda和python的教程详解

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  9. VUE ECharts人际关系图

    1. 概述 1.1 说明 项目中需要对某个人的人际关系进行展示,故使用echarts中的关系图进行处理此需求. 2. 代码 2.1 代码示例 <template> <div clas ...

  10. 【转载】【软件安装】Source Insight 4.0常用设置

    1.Source Insight简介 Source Insight是一个面向软件开发的代码编辑器和浏览器,它拥有内置的对C/C++, C#和Java等源码的分析,创建并动态维护符号数据库,并自动显示有 ...