bzoj 4386: [POI2015]Wycieczki
这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了好长时间……
先说一下超级汇点的计数吧,先说结论:
1.将所有点(此题中只有一级点)向一个超级汇点0连边,将矩阵乘n次,相应的f[i][j]即为从i到j的走n步方案数,f[i][0]为i到0走n步的方案数,若在给他乘一个ans矩阵(ans在前),则f[0][0]-n(点数)为所有长度等于n(指数)的路径的方案数。ans矩阵为0向所有其他点连边。
2.若在1中,将0想自己连边,则每次相乘都会积累,最终得出的即为所有长度小于等于n的路径方案数。
具体可以这样理解:
ans矩阵相当于从超级汇点出发走一步,每乘一个base矩阵,相当于走一步,乘了n次后,相当于走n步,但是还要再乘一个base,相当于各点回到0,而计数器中仍保留着从0走出的方案数,此时f[0][0]-点数即为答案。(这种问题自己手模一下会更容易理解吧)。
然后是题解:
边权只有1,2,3三种,考虑拆点(在‘迷路’中也用到了同样的方法),将一个点分为三级,$get(int po,int w){return (po-1)*3+w;}$,将每个点的第一级向第二级连边,第二级向第三级连边,对于一条a->b,长度为w的边,从a的第w级向b的第一级连长度为1的边。
代码实现:
for(int i=;i<=m;i++)
{
a=read(),b=read(),c=read();
cs.m[get(a,c)][get(b,)]++;
}
for(int i=;i<=n;i++)
{
cs.m[get(i,)][get(i,)]++;
cs.m[get(i,)][get(i,)]++;
}
这样就得到了一个初始矩阵,构造出ans矩阵,显然可以二分枚举长度解决,但是复杂度比较高会T,考虑倍增,提前预处理出初始矩阵乘$2^i$后的矩阵,像LCA那样搞就可以了。
然而这道题还有几个坑点:
方案数乘的时候会爆longlong(如果你打的恶心点连__int128都会爆),可以加判断,个人感觉比较麻烦,于是就用了double,还会爆?丝毫不慌还有long double。
然后就T了,用lemon测了一下,跑了一百多秒,好在都跑对了,其实这不是long double的锅,和我自带的大常数关系也不大,在预处理倍增数组时我固定给他求到了65,导致时间比较长,其实可以记录一下:
for(int i=;i<=;i++,imax++){F[i]=F[i-]*F[i-];if((ans*F[i]).count()>k)break;}
然后就A了,跑得还挺快。其实我还是搞不懂为啥会差这么多,固定求到65复杂度也是$n^3log_n$啊……
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N n*3
#define LD long double
#define LL long long
using namespace std;
int n,m;LL k;
struct jz
{
LD m[121][121];
LD count() {return m[0][0]-n;}
}cs,ans,F[70];
jz operator * (jz &a,jz &b)
{
jz ans;
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
ans.m[i][j]=0;
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
for(int k=0;k<=N;k++)
ans.m[i][j]+=a.m[i][k]*b.m[k][j];
return ans;
}
inline int get(const register int po,const register int w){return (po-1)*3+w;}
inline LL read()
{
LL s=0;char a=getchar();
while(a<'0'||a>'9')a=getchar();
while(a>='0'&&a<='9'){s=s*10+a-'0';a=getchar();}
return s;
}
signed main()
{
// freopen("10.in","r",stdin); n=read(),m=read(),k=read();
int a,b,c;
for(int i=1;i<=m;i++)
{
a=read(),b=read(),c=read();
cs.m[get(a,c)][get(b,1)]++;
}
for(int i=1;i<=n;i++)
{
cs.m[get(i,1)][get(i,2)]++;
cs.m[get(i,2)][get(i,3)]++;
}
LL imax=1;
cs.m[0][0]=1;
for(int i=1;i<=n;i++)cs.m[get(i,1)][0]++;
for(int i=1;i<=n;i++)ans.m[0][get(i,1)]=1;
F[0]=cs;
for(int i=1;i<=65;i++,imax++){F[i]=F[i-1]*F[i-1];if((ans*F[i]).count()>k)break;}
if((ans*F[imax]).count()<k){cout<<-1<<endl;return 0;}
LL num=0;
for(int i=imax;i>=0;i--)
{
jz tm=ans*F[i];
if(tm.count()<k){num+=1ll<<i;ans=ans*F[i];}
}
cout<<num<<endl;
}
bzoj 4386: [POI2015]Wycieczki的更多相关文章
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- BZOJ 4385: [POI2015]Wilcze doły
4385: [POI2015]Wilcze doły Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 648 Solved: 263[Submit][ ...
- BZOJ 4384: [POI2015]Trzy wieże
4384: [POI2015]Trzy wieże Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 217 Solved: 61[Submit][St ...
- Bzoj 3747: [POI2015]Kinoman 线段树
3747: [POI2015]Kinoman Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 553 Solved: 222[Submit][Stat ...
- BZOJ 3747 POI2015 Kinoman 段树
标题效果:有m点,每个点都有一个权值.现在我们有这个m为点的长度n该序列,寻求区间,它仅出现一次在正确的点区间内值和最大 想了很久,甚至神标题,奔说是水的问题--我醉了 枚举左点 对于每个请求留点右键 ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
- BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...
- BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...
- BZOJ 3747 POI2015 Kinoman
因为上午没有准备够题目,结果发现写完这道题没题可写了QAQ 又因为这道题范围是100w,我写了发线段树,以为要T,上午就花了一个小时拼命卡常数 结果下午一交居然过了QAQ 我们考虑枚举L,求最大R使得 ...
随机推荐
- Oracle中函数如何返回结果集
在Oracle中,用函数返回结果集有时候要用到,下面是demo: 1 2 3 4 5 6 7 create or replace type t_test as object ( id integer, ...
- 公共钥匙盒 ccf
试题编号: 201709-2 试题名称: 公共钥匙盒 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 有一个学校的老师共用N个教室,按照规定,所有的钥匙都必须放在公共钥匙盒里, ...
- css3 炫酷下拉菜单
<!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...
- CesiumLab V1.1 新功能 (免费Cesium处理工具集)
Cesiumlab 自从上周(3月20日)发布之后,赢得小伙伴一致好评. 本周继续推出重大更新: 建筑物矢量数据 转 3dtiles, 建筑物矢量数据 转 3dtiles, 建筑物矢量数据 转 3 ...
- day37 03-Hibernate二级缓存:集合缓冲区特点
所以说要经常检查hibernate3的核心配置文件hibernate.cfg.xml. Hibernate: select customer0_.cid as cid0_0_, customer0_. ...
- 从0开始学习 GitHub 系列之「04.向GitHub 提交代码」
之前的这篇文章「从0开始学习 GitHub 系列之「Git速成」」相信大家都已经对 Git 的基本操作熟悉了,但是这篇文章只介绍了对本地 Git 仓库的基本操作,今天我就来介绍下如何跟远程仓库一起协作 ...
- 逐行粒度的vuex源码分析
vuex源码分析 了解vuex 什么是vuex vuex是一个为vue进行统一状态管理的状态管理器,主要分为state, getters, mutations, actions几个部分,vue组件基于 ...
- 如何解决IntelliJ在打包Maven项目时不打包配置文件
在pom文件中加上你的配置文件夹目录: <build> <resources> <resource> <directory>src/res</di ...
- HTML-DOM实例——实现带样式的表单验证
HTML样式 基于table标签来实现页面结构 <form id="form1"> <h2>增加管理员</h2> <table&g ...
- Tool-图片压缩-腾讯智图:腾讯智图
ylbtech-Tool-图片压缩-腾讯智图:腾讯智图 智图是腾讯ISUX前端团队开发的一个专门用于图片压缩和图片格式转换的平台,其功能包括针对png,jpeg,gif等各类格式图片的压缩,以及为上传 ...