1、word2vec

耳熟能详的NLP向量化模型。 
Paper: https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Java: http://deeplearning4j.org/word2vec

C++: https://github.com/jdeng/word2vec

Python:

https://radimrehurek.com/gensim/models/word2vec.html 
https://github.com/danielfrg/word2vec

2、doc2vec

Paper: https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Python: https://radimrehurek.com/gensim/models/doc2vec.html

word2vec模型对词向量进行平均处理,我们仍然忽略了单词之间的排列顺序对情感分析的影响。即上述的word2vec只是基于词的维度进行”语义分析”的,而并不具有上下文的”语义分析”能力。

  作为一个处理可变长度文本的总结性方法,Quoc Le 和 Tomas Mikolov 提出了 Doc2Vec方法。除了增加一个段落向量以外,这个方法几乎等同于 Word2Vec。和 Word2Vec 一样,该模型也存在两种方法:Distributed Memory(DM) 和 Distributed Bag of Words(DBOW)。DM 试图在给定上下文和段落向量的情况下预测单词的概率。在一个句子或者文档的训练过程中,段落 ID 保持不变,共享着同一个段落向量。DBOW 则在仅给定段落向量的情况下预测段落中一组随机单词的概率。 
(参考:Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型 )

3、tweet2vec

Paper: https://arxiv.org/abs/1605.03481

Python: https://github.com/bdhingra/tweet2vec

一些社交文本中的语言结构跟书面语大不相同,所以作者别出心裁的特意做了一个基于字符组合的模型,其可以基于整个微博环境下复杂、非正常语言的字符串中学习到一种向量化的表达方式。

4、batter-pitcher-2vec

Python: https://github.com/airalcorn2/batter-pitcher-2vec

5、illustration-2vec

Python: https://github.com/rezoo/illustration2vec

6、lda2vec

Paper: https://arxiv.org/pdf/1605.02019v1.pdf

Slideshare: http://www.slideshare.net/ChristopherMoody3/word2vec-lda-and-introducing-a-new-hybrid-algorithm-lda2vec-57135994

Python: https://github.com/cemoody/lda2vec

将LDA与word2vec相结合,LDA是我比较在意的研究方向,这个模型很早提出,不过应用地倒是不多。

 
lda2vec the topics can be ‘supervised’ and forced to predict another target.

7、sentence2vec

Python: https://github.com/klb3713/sentence2vec

8、wiki2vec

Java/Scala: https://github.com/idio/wiki2vec

9、topicvec

Paper: http://bigml.cs.tsinghua.edu.cn/~jun/topic-embedding.pdf

Python: https://github.com/askerlee/topicvec

10、entity2vec

Python: https://github.com/ot/entity2vec

Paper: http://www.di.unipi.it/~ottavian/files/wsdm15_fel.pdf

11、str2vec

Python: https://github.com/pengli09/str2vec

12、node2vec

Paper: https://arxiv.org/abs/1607.00653

Page: https://snap.stanford.edu/node2vec/

Python: https://github.com/aditya-grover/node2vec

可见:笔记︱基于网络节点的node2vec、论文、算法python实现

13、item2vec

Paper: https://arxiv.org/abs/1603.04259

14、author2vec

Paper: https://www.microsoft.com/en-us/research/publication/author2vec-learning-author-representations-by-combining-content-and-link-information/

15、playlist-to-vec

Python: https://github.com/mattdennewitz/playlist-to-vec

16、sense2vec

Paper: https://arxiv.org/abs/1511.06388

17、med2vec

Paper: https://arxiv.org/abs/1602.05568

Python: https://github.com/mp2893/med2vec

SCODE Word Embeddings using Substitute Words

Python: https://github.com/ai-ku/wvec

18、game2vec

Python: https://github.com/warchildmd/game2vec

19、paper2vec

Paper: https://arxiv.org/pdf/1703.06587.pdf

转自:http://blog.csdn.net/sinat_26917383/article/details/69666596

 

NLP+2vec︱认识多种多样的2vec向量化模型的更多相关文章

  1. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  2. 自然语言处理NLP学习笔记一:概念与模型初探

    前言 先来看一些demo,来一些直观的了解. 自然语言处理: 可以做中文分词,词性分析,文本摘要等,为后面的知识图谱做准备. http://xiaosi.trs.cn/demo/rs/demo 知识图 ...

  3. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(一)

    初识马尔可夫和马尔可夫链 作者:白宁超 2016年7月10日20:34:20 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处 ...

  4. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)

    马尔可夫模型与隐马尔可夫模型 作者:白宁超 2016年7月11日15:31:11 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语 ...

  5. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(三)

    向前算法解决隐马尔可夫模型似然度问题 作者:白宁超 2016年7月11日22:54:57 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学 ...

  6. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(四)

    维特比算法解决隐马尔可夫模型解码问题(中文句法标注) 作者:白宁超 2016年7月12日14:08:28 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无 ...

  7. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(五)

    向前向后算法解决隐马尔可夫模型机器学习问题 作者:白宁超 2016年7月12日14:28:10 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场. ...

  8. NLP直播-1 词向量与ELMo模型

    翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LST ...

  9. TF-IDF与主题模型 - NLP学习(3-2)

    分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2) 文本向量化及词袋模型 - NLP学习(3-1) 在上一篇博文 ...

随机推荐

  1. PAT甲级——A1048 Find Coins

    Eva loves to collect coins from all over the universe, including some other planets like Mars. One d ...

  2. Ajax的简单基础

    什么是 AJAX ? AJAX 是一种用于创建快速动态网页的技术. 通过在后台与服务器进行少量数据交换,AJAX 可以使网页实现异步更新. 这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行 ...

  3. web api中允许跨域访问

    ①添加owin的引用 ②添加owin.Cors的引用 ③在WebApiConfig中添加 config.EnableCors(new EnableCorsAttribute("*" ...

  4. i\'ll make a man out of you

    Let's get down to business To defeat the Huns Did they send me daughters When I asked for sons? You' ...

  5. MFC 双缓存绘图

    在SDI应用程序中,当我们需要时刻动态刷新界面的时候,如果我们一直使用,UpdateAllView()那么就会出现屏幕不停闪烁.闪屏非常严重,特别是一直在动态刷新的时候.并且在闪屏的过程中 我们根本就 ...

  6. 2019阿里云开年Hi购季必抢!爆爆爆爆爆爆爆款清单来了!

    摘要: 鸡冻人心的三月开年Hi购季来了,根本不知道该买哪款?这次就给大家列一波口碑爆款! 鸡冻人心的三月开年Hi购季来了 个个摩拳擦掌 为了算清楚能省多少钱 颓废多年的数学水平 仿佛在这个节日回到了高 ...

  7. Django项目:CRM(客户关系管理系统)--36--28PerfectCRM实现King_admin编辑限制

    #admin.py # ————————01PerfectCRM基本配置ADMIN———————— from django.contrib import admin # Register your m ...

  8. 一句话介绍python线程、进程和协程

    一.进程: Python的os模块封装了常见的系统调用,其中就包括fork.而fork是linux常用的产生子进程的方法,简言之是一个调用,两个返回. 在python中,以下的两个模块用于进程的使用. ...

  9. niec-validator 表单验证使用案例

    css .msg-box span { font-size: .5rem; color: #7699c6; } .msg-box .tip { padding-left: 18px; backgrou ...

  10. loading遮罩

    .loading{ position: relative; cursor: default; point-events: none; text-shadow: none!important; colo ...