这个问题似乎有很多种求法,但感觉上第二类Strling数的做法是最方便的。


问题

求下面这个式子:

∑i=0nik\sum_{i=0}^n i^ki=0∑n​ik

nnn的范围可以很大。


第二类Strling数

第二类Strling数记作S(n,m)S(n,m)S(n,m)、SnmS_n^mSnm​。

定义:将nnn个相同的球放在mmm个不同的箱子里的方案数(其中的每一个箱子至少有一个球)。

很容易推出一个式子:Snm=Sn−1m−1+mSn−1mS_n^m=S_{n-1}^{m-1}+mS_{n-1}^mSnm​=Sn−1m−1​+mSn−1m​。不解释。

有个通项公式,但是我不会推……不过在处理这个问题的时候用不着。


一个性质

ak=∑i=0kSkii!Caia^k=\sum_{i=0}^kS_k^i i! C_a^iak=i=0∑k​Ski​i!Cai​

如果直接理性地证明可能不容易,所以在这里通过它的定义来推理一下:

对于等式左边,相当于kkk个不同的球放在aaa个不同的箱子里。

对于等式右边,先枚举非空箱子的个数,SkiS_k^iSki​表示kkk个不同的球放在iii个相同的箱子里。乘上i!i!i!相当于放在不同的箱子里,再乘上非空箱子的选法CaiC_a^iCai​。

当然这条式子也可以化成:

∑i=0kSki∏j=a−i+1aj\sum_{i=0}^kS_k^i \prod_{j=a-i+1}^a ji=0∑k​Ski​j=a−i+1∏a​j


推理

先把结论放在前面:

∑i=0nik=∑i=0kSki∏j=n−i+1n+1ji+1\sum_{i=0}^n i^k=\sum_{i=0}^k\frac{S_k^i\prod_{j=n-i+1}^{n+1}j}{i+1}i=0∑n​ik=i=0∑k​i+1Ski​∏j=n−i+1n+1​j​

证明如下:

∑i=0nik=∑a=0n∑i=0kSkii!Cai=∑i=0kSkii!∑a=0nCai\sum_{i=0}^n i^k \\
=\sum_{a=0}^n\sum_{i=0}^kS_k^i i! C_a^i \\
=\sum_{i=0}^kS_k^i i!\sum_{a=0}^nC_a^i i=0∑n​ik=a=0∑n​i=0∑k​Ski​i!Cai​=i=0∑k​Ski​i!a=0∑n​Cai​

因为a&lt;ia&lt;ia<i时Cai=0C_a^i=0Cai​=0,所以

=∑i=0kSkii!∑a=inCai=\sum_{i=0}^kS_k^i i!\sum_{a=i}^nC_a^i=i=0∑k​Ski​i!a=i∑n​Cai​

由Cmn=Cm−1n−1+Cm−1nC_m^n =C_{m-1}^{n-1}+C_{m-1}^nCmn​=Cm−1n−1​+Cm−1n​得

∑a=inCai=Cii+Ci+1i+⋯+Cni=Cii+1+Cii+Ci+1i+⋯+Cni=Ci+1i+1+Ci+1i+⋯+Cni⋯=Cn+1i+1\sum_{a=i}^nC_a^i=C_i^i+C_{i+1}^i+\cdots +C_n^i \\
=C_i^{i+1}+C_i^i+C_{i+1}^i+\cdots +C_n^i \\
=C_{i+1}^{i+1}+C_{i+1}^i+\cdots +C_n^i \\
\cdots \\
=C_{n+1}^{i+1}
a=i∑n​Cai​=Cii​+Ci+1i​+⋯+Cni​=Cii+1​+Cii​+Ci+1i​+⋯+Cni​=Ci+1i+1​+Ci+1i​+⋯+Cni​⋯=Cn+1i+1​

所以原式又可以化成下面这样:

=∑i=0kSkii!Cn+1i+1=∑i=0kSki∏j=n−i+1n+1ji+1=\sum_{i=0}^kS_k^i i!C_{n+1}^{i+1} \\
=\sum_{i=0}^k\frac{S_k^i\prod_{j=n-i+1}^{n+1}j}{i+1}=i=0∑k​Ski​i!Cn+1i+1​=i=0∑k​i+1Ski​∏j=n−i+1n+1​j​

这样式子就推完了。

自然数幂求和——第二类Strling数的更多相关文章

  1. HDU 4045 Machine scheduling --第二类Strling数

    题意: n个数(1~n)取出r个数,取出的数相差要>=k, 然后分成m个可空组,问有多少种情况. 解法: 先看从n个数中取r个相差>=k的数的方法数,可以发现 dp[i][j] = dp[ ...

  2. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  3. Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )

    题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 :  题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...

  4. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  5. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  6. 自然数幂和&伯努利数(Bernoulli)

    二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...

  7. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  8. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  9. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

随机推荐

  1. Dubbo 3.0 预览版解读,6到飞起~

    , false).start(); ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new St ...

  2. 使用SDK方式进行微信授权

    1.在pom.xml中添加依赖 <dependency> <groupId>com.github.binarywang</groupId> <artifact ...

  3. IntelliJ IDEA无法创建springboot项目解决办法

    最佳解决办法:IntelliJ IDEA---右键---以管理员身份运行. 方法二: 1.打开控制面板--系统和安全--windows防火墙 2.找到自己的默认浏览器,打勾,这里是谷歌浏览器 3.打开 ...

  4. DLL相关下断点

    加载DLL 的时候断: sxe ld:[dll] 卸载DLL 的时候断: sxe ud:[dll] 比如: sxe ld:wininet.dll  (在wininet.dll 被装载的时候断点) 这里 ...

  5. npm -v 报错:cannot find module 'core-util-is'

    今天想打开之前的项目运行看看,结果报错:cannot find module 'core-util-is',以为只是缺少模块core-util-is,然后npm install --save core ...

  6. Task ProgressBar模拟现实完成后显示TextBox

    private async void Form1_Load(object sender, EventArgs e) { progressBar1.Maximum = ; progressBar2.Ma ...

  7. springboot mail 发送邮件

    新开发了一个新的功能,要求使用java发送邮件,在此记录下代码,以方便后来者: 1.首先需要开通邮箱,开通smtp功能,我这边使用的是新浪邮箱,试过163.qq,比较麻烦,后来看到别人使用新浪,直接使 ...

  8. Java 多线程 - ThreadLocal

    ref: https://www.cnblogs.com/chengxiao/p/6152824.html

  9. csps模拟85表达式密码,电压机制,括号密码题解

    题面:https://www.cnblogs.com/Juve/articles/11733280.html 表达式密码: 是个水题... #include<iostream> #incl ...

  10. 多线程编程9认识等待函数WaitForSingleObject

    一下子跳到等待函数 WaitForSingleObject, 是因为下面的 Mutex.Semaphore.Event.WaitableTimer 等同步手段都要使用这个函数; 不过等待函数可不止 W ...