题意:给你一个无向图,问图中有多少个符合条件的集合?条件为这个集合里面存在一个子集(大小>=3)为团或者都是孤立点。答案mod1e9+7;

根据 Ramsey定理,大于等于6个的集合,肯定存在一个子集的边都是红色或者都是蓝色,即为团还是为孤立点;

所以当n大于等于6的时候,所有的取6个或六个以上的子集的集合都是符合的,所以将这些排列组合的方式全部都计算在内;

即C(n,i)  i的取值范围为(6~n) 但是这样子算会超时,我们可以计算C(n,i) i从0开始计算,这样子所有的数加起来,就是2^n

然后再减去C(n,i)i从0到5即可;

n的取值范围到50,所以暴力不超时;

然后还剩下点集为3到5的情况,这个时候,我们就分别枚举点集为3,4,5,判断是否满足情况即可(题目给出的m条边就在这个时候起作用)

只要满足图中有3个为孤立点即可;

代码如下:

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int M = 1e2+;
const LL mod = 1e9+;
int ncase,n,m,cas=;
int vis[M][M];
LL fac[M];
void init()
{ ///预处理阶乘
fac[]=;fac[]=;
for (int i=;i<M;i++)
fac[i]=fac[i-]*i%mod;
}
LL quick_pow(LL p,LL k) ///快速幂
{
LL res=,tp=p;
if(k<) return ;
while(k){
if(k&) res=res*tp%mod;
tp=tp*tp%mod;
k>>=;
}
return res;
}
LL C(int n,int m)
{
return fac[n]*quick_pow(fac[m],mod-)%mod*quick_pow(fac[n-m],mod-)%mod;
}///费马小定理求逆元+快速幂
int judge(int i,int j,int k){ ///判断三点之间满不满足不稳定点集
if(vis[i][j]&&vis[i][k]&&vis[j][k]) return ;///三点之间相连
if(!vis[i][j]&&!vis[i][k]&&!vis[j][k]) return ; ///三点之间不互联
return ;
}
int judge1(int i,int j,int k,int l)
{
if(judge(i,j,k)||judge(i,j,l)||judge(j,k,l)||judge(i,k,l)) return ; ///表示4个点中有三个点为不稳定点集就行,为什么呢?
///因为时题目要求的,不稳定点集为3个点。
return ;
}
int judge2(int i,int j,int k,int l,int o){
///表示5个点中有4个点满足就行
if(judge1(i,j,k,l)||judge1(i,j,k,o)||judge1(i,j,l,o)||judge1(j,k,l,o)||judge1(i,k,l,o)) return ;
return ;
} int main(){ init();
scanf("%d",&ncase);
while(ncase--){
scanf("%d%d",&n,&m);
memset(vis,false,sizeof(vis));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
vis[u][v]=vis[v][u]=;
}
LL ans=;
if(n>=){
ans=(ans+quick_pow(,n))%mod; ///多项式定理C(n,0)+C(n,1)+...+C(n,n)=2^n
///C(n,k)(k>=6)表示,从n个中取k个出来,总存在一个不稳定点集的个数(三点之间互联或三点之间不连)
for(int i=;i<;i++) ///减去前5个
ans=(ans-C(n,i)+mod)%mod;
}
if(n>=){ ///暴力取3个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
if(judge(i,j,k)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取4个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
if(judge1(i,j,k,l)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取5个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
for(int o=l+;o<=n;o++)
if(judge2(i,j,k,l,o)) ans=(ans+)%mod;
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;}

hdu 5917的更多相关文章

  1. HDU 5917 Instability ramsey定理

    http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后 ...

  2. HDU - 5917 水题

    题意:n个点m条边,找点集个数,点集满足有任意三个点成环,或者三个点互不相连 题解:暴力复杂度O(n^5/120*O(ok))==O(能过) //#pragma comment(linker, &qu ...

  3. 近几年ACM/ICPC区域赛铜牌题

    2013 changsha zoj 3726 3728 3736 3735 2013 chengdu hud 4786 4788 4790 2013 hangzhou hdu 4770 4771 47 ...

  4. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  6. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  7. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  9. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

随机推荐

  1. go 函数传递结构体

    我定义了一个结构体,想要在函数中改变结构体的值,记录一下,以防忘记 ep: type Matrix struct{ rowlen int columnlen int list []int } 这是一个 ...

  2. Burp Suite 实战指南--说明书

       burp使用指南 网址:https://t0data.gitbooks.io/burpsuite/content/

  3. go笔记--几个例子理解context的作用

    目录 go笔记--几个例子理解context的作用 context interface 先看一个简单的例程 context的作用 contxt相关函数 go笔记--几个例子理解context的作用 经 ...

  4. 【MVC】Scripts.Render的用法

    一.配置BundleConfig.cs文件 1.首先要在App_Start 里面BundleConfig.cs 文件里面 添加要包含的css文件2.BundleConfig就是一个微软新加的 一个打包 ...

  5. c#Socket通信基本使用

    基本流程 Server private void btnStart_Click(object sender, EventArgs e) { try { //当点击开始监听时在服务器端创建一个负责监视I ...

  6. C. Long Beautiful Integer

    题目思路还是很直接,首先按要求生成字符串.如果该目标字符串小于原字符串,那么从第k位开始,找到最后一个非9的位置,++,同时如果有9,要考虑进位(一开始没有考虑WA了一次). 犯了一个错误,就是比较字 ...

  7. 如何在IDEA中使用GitHub

    第一步:在GitHub网站中注册自己的账号 地址:https://github.com/ 第二步:下载Git客户端 地址:https://git-scm.com/ 第三步:在GitBash中配置用户名 ...

  8. codeforces 1284E

    计数每一个点被被其他点组成的四边形完全包含的四边形的个数,给出的点没有三点共线的情况 官方题解如下,说的很清楚,也很有技巧 代码也是直接参考官方的题解来的 #include<bits/stdc+ ...

  9. 0009 基于DRF框架开发(02 创建模型)

    上一节介绍了DRF开发的基本流程,共五个步骤: 1 创建模型 2 创建序列化器 3 编写视图 4 配置URL 5 运行测试 本节主要讲解创建模型. 构建学校,教师,学生三个模型,这三个模型之间的关系是 ...

  10. 关于eclipse 项目导入不了 maven依赖的解决办法

    1.首先确定你的项目是maven 项目 ,如果不是:项目右键Configure -->Convert to maven project. 2.在SVN导出的Maven项目,或以前不是用Maven ...