题意:给你一个无向图,问图中有多少个符合条件的集合?条件为这个集合里面存在一个子集(大小>=3)为团或者都是孤立点。答案mod1e9+7;

根据 Ramsey定理,大于等于6个的集合,肯定存在一个子集的边都是红色或者都是蓝色,即为团还是为孤立点;

所以当n大于等于6的时候,所有的取6个或六个以上的子集的集合都是符合的,所以将这些排列组合的方式全部都计算在内;

即C(n,i)  i的取值范围为(6~n) 但是这样子算会超时,我们可以计算C(n,i) i从0开始计算,这样子所有的数加起来,就是2^n

然后再减去C(n,i)i从0到5即可;

n的取值范围到50,所以暴力不超时;

然后还剩下点集为3到5的情况,这个时候,我们就分别枚举点集为3,4,5,判断是否满足情况即可(题目给出的m条边就在这个时候起作用)

只要满足图中有3个为孤立点即可;

代码如下:

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int M = 1e2+;
const LL mod = 1e9+;
int ncase,n,m,cas=;
int vis[M][M];
LL fac[M];
void init()
{ ///预处理阶乘
fac[]=;fac[]=;
for (int i=;i<M;i++)
fac[i]=fac[i-]*i%mod;
}
LL quick_pow(LL p,LL k) ///快速幂
{
LL res=,tp=p;
if(k<) return ;
while(k){
if(k&) res=res*tp%mod;
tp=tp*tp%mod;
k>>=;
}
return res;
}
LL C(int n,int m)
{
return fac[n]*quick_pow(fac[m],mod-)%mod*quick_pow(fac[n-m],mod-)%mod;
}///费马小定理求逆元+快速幂
int judge(int i,int j,int k){ ///判断三点之间满不满足不稳定点集
if(vis[i][j]&&vis[i][k]&&vis[j][k]) return ;///三点之间相连
if(!vis[i][j]&&!vis[i][k]&&!vis[j][k]) return ; ///三点之间不互联
return ;
}
int judge1(int i,int j,int k,int l)
{
if(judge(i,j,k)||judge(i,j,l)||judge(j,k,l)||judge(i,k,l)) return ; ///表示4个点中有三个点为不稳定点集就行,为什么呢?
///因为时题目要求的,不稳定点集为3个点。
return ;
}
int judge2(int i,int j,int k,int l,int o){
///表示5个点中有4个点满足就行
if(judge1(i,j,k,l)||judge1(i,j,k,o)||judge1(i,j,l,o)||judge1(j,k,l,o)||judge1(i,k,l,o)) return ;
return ;
} int main(){ init();
scanf("%d",&ncase);
while(ncase--){
scanf("%d%d",&n,&m);
memset(vis,false,sizeof(vis));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
vis[u][v]=vis[v][u]=;
}
LL ans=;
if(n>=){
ans=(ans+quick_pow(,n))%mod; ///多项式定理C(n,0)+C(n,1)+...+C(n,n)=2^n
///C(n,k)(k>=6)表示,从n个中取k个出来,总存在一个不稳定点集的个数(三点之间互联或三点之间不连)
for(int i=;i<;i++) ///减去前5个
ans=(ans-C(n,i)+mod)%mod;
}
if(n>=){ ///暴力取3个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
if(judge(i,j,k)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取4个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
if(judge1(i,j,k,l)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取5个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
for(int o=l+;o<=n;o++)
if(judge2(i,j,k,l,o)) ans=(ans+)%mod;
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;}

hdu 5917的更多相关文章

  1. HDU 5917 Instability ramsey定理

    http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后 ...

  2. HDU - 5917 水题

    题意:n个点m条边,找点集个数,点集满足有任意三个点成环,或者三个点互不相连 题解:暴力复杂度O(n^5/120*O(ok))==O(能过) //#pragma comment(linker, &qu ...

  3. 近几年ACM/ICPC区域赛铜牌题

    2013 changsha zoj 3726 3728 3736 3735 2013 chengdu hud 4786 4788 4790 2013 hangzhou hdu 4770 4771 47 ...

  4. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  6. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  7. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  9. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

随机推荐

  1. [Contract] Solidity 判断 mapping 值的存在

    比如 mapping(address => uint) tester,只需要判断 mapping 是否为默认值 0, tester[msg.sender] == 0 "You can ...

  2. ggEditor流程图增加网格背景

    参考官方文档: https://www.yuque.com/antv/g6/plugin.tool.grid react-ggEditor如何使用 import { Flow } from 'gg-e ...

  3. 新年上新!极光认证 Web SDK 首版上线

    新年伊始,极光开发者服务也抢先为各位开发者朋友带来了"新年大礼包",几款明星产品都悉数有不少更新: 极光认证 Web SDK 版本上线 相信不少小伙伴早已熟知极光认证这款产品,3秒 ...

  4. shell中expect免交互

    expect前言观察ssh登录的交互现象有些程序难以避免的需要交互.你该如何解决脚本与程序的交互问题?名词解释期待, 预期, 盼望, 预料,料想, 指望, 希望, 要求,想, 认为一.概述 我们通过S ...

  5. 【Android】LitePal的基础

    一.环境配置 LitePal 在GitHub地址为:https://github.com/LitePalFramework/LitePal 我们使用起来也很方便,直接在gradle中配置即可. 如果你 ...

  6. Quartz学习——Quartz大致介绍 转

    转自阿飞先生 http://blog.csdn.net/u010648555/article/details/54863144 1. 介绍 Quartz是OpenSymphony开源组织在Job sc ...

  7. 使用IDA pro逆向ARM M系核心的Bin固件

    使用IDA pro逆向ARM M系核心的Bin固件 ​ 物联网和智能设备这两年还是比较火的,我们的手中或多或少都有了几个智能设备,比如手环,智能手表,或者门锁什么之类的东西,但是同学们在做逆向的时候, ...

  8. Web_0005:阿里云服务器OSS权限的配置开通

    创建用户 1,创建子用户 2,点击新建用户 3,设置账号类型,可以同时选 设置权限 1,设置对阿里云模块的控制权限,如 oss  ecs 等的访问控制权限 2,点击所需的权限 3,获取账号的Acess ...

  9. Uva1635 二项式递推+质因子分解+整数因子分解

    题意: 给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关? 例如n=3,m=2时,第一次得到a1+a2, ...

  10. 【Android休眠】之Android休眠机制

    一.休眠概述 休眠,简而言之就是设备在不需要工作的时候把一些部件.外设关掉(掉电或让它进入低功耗模式). 为什么要休眠呢?一言以蔽之:省电. 休眠分主动休眠和被动休眠.主动休眠:比如我电脑不用了,就通 ...