在微生物分析中,经常使用稀释性曲线来评估测序量是否足够;可以使用mothur 这个软件来完成

rarefaction.single 命令用来做稀释性曲线,既可以对单个样本单独分析,也可以一次对多个样本进行分析

对多个样本进行分析:以shannon 指数为例

需要准备一个shared 文件,shared 文件格式可以参考mothur官方文档

https://www.mothur.org/wiki/Shared_file

示例shared 文件如下:

label   Group   numOtus OTU1    OTU2    OTU3    OTU4
usearch A0 792 10125 1572 23 4210
usearch A1 792 2949 1759 6268 2368
usearch A2 792 16895 3861 5576 326
usearch A3 792 1114 3895 2945 1180
usearch A4 792 770 1506 108 450
usearch A5 792 4420 4657 109 265
usearch A6 792 3538 3430 3898 643

mothur 运行的命令如下:

mothur "#rarefaction.single(shared = sample.shared,label = userach,calc = shannon, groupmode = f, processors = 20)"

运行完成之后,在sample.shared 所处的目录下,会生成一系列文件:

1)每个样本对应的 r_abund 文件

示例如下:

usearch 414     10125   4644    4217    4210    4110    3241

其实这个文件就是从sample.shared 中把每个样本单独抽出来

2) 每个样本对应的 r_shannon 文件

示例文件如下:

numsampled      usearch lci     hci
1 0.0000 -0.0000 -0.0000
100 3.4685 3.2035 3.6901
200 3.6593 3.4758 3.7967
300 3.7319 3.6156 3.8696
400 3.7684 3.6695 3.8807
500 3.8004 3.6914 3.8794
600 3.8228 3.7240 3.9017

第一列是抽样的次数,第二列数对应的shannon 指数的值,lci 和 hci 分别代表95%置信区间的左右边界;

基于抽样的次数和每次抽样计算得到的shannon 指数的值就可以画香浓曲线了:

mothur 计算稀释性曲线的更多相关文章

  1. R语言 vegan包计算物种累计曲线

    vegan 包是进行群落数据分析最常用的R包,其中的 specaccum 函数用来计算物种的累计曲线 首先看下官方示例: library(vegan) data(BCI) sp1 <- spec ...

  2. [opencv]计算多边形逼近曲线的长度

    //利用曲线逼近,计算逼近曲线的长度 //首先创建一个逼近曲线 vector<Point2f> approx; approxPolyDP(contours[i], approx, 2, t ...

  3. 16S 基础知识、分析工具和分析流程详解

    工作中有个真理:如果你连自己所做的工作的来龙去脉都讲不清楚,那你是绝对不可能把这份工作做好的. 这适用于任何行业.如果你支支吾吾,讲不清楚,那么说难听点,你在混日子,没有静下心来工作. 检验标准:随时 ...

  4. Deep Learning 学习随记(六)Linear Decoder 线性解码

    线性解码器(Linear Decoder) 前面第一章提到稀疏自编码器(http://www.cnblogs.com/bzjia-blog/p/SparseAutoencoder.html)的三层网络 ...

  5. 三层神经网络自编码算法推导和MATLAB实现 (转载)

    转载自:http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html 前言: 现在来进入sparse autoencoder的一 ...

  6. Exercise:Sparse Autoencoder

    斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了   http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724 ...

  7. Geatpy遗传算法在曲线寻优上的初步探究

    园子里关于遗传算法的教案不少,但基于geatpy框架的并未多见,故分享此文以作参考,还望广大园友多多指教! Geatpy出自三所名校联合团队之手,是遗传算法领域的权威框架(python),其效率之高. ...

  8. LC滤波电路分析,LC滤波电路原理及其时间常数的计算

    LC滤波器具有结构简单.设备投资少.运行可靠性较高.运行费用较低等优点,应用很广泛. LC滤波器又分为单调谐滤波器.高通滤波器.双调谐滤波器及三调谐滤波器等几种. LC滤波主要是电感的电阻小,直流损耗 ...

  9. 曲线参数化的Javascript实现(代码篇)

    在曲线参数化的Javascript实现(理论篇)中推出了曲线弧长积分的公式,以及用二分法通过弧长s来查找样条曲线上对应的u,再求Q(u)的值.弧长积分函数如下: ,其中-----公式1 Simpson ...

随机推荐

  1. 解决kafka集群由于默认的__consumer_offsets这个topic的默认的副本数为1而存在的单点故障问题

    抛出问题: __consumer_offsets这个topic是由kafka自动创建的,默认50个,但是都存在一台kafka服务器上,这是不是就存在很明显的单点故障?经测试,如果将存储consumer ...

  2. 设置Chrome忽略网站证书错误

    本人在XP下使用Chrome.总是莫名其妙的提示整数错误,一部分https网站无法直接访问.网上找了下,把解决思路记录下来. 解决这个问题很简单,只需要修改你平时用来启动Chrome的快捷方式就可以忽 ...

  3. Makefile常用万能模板(包括静态链接库、动态链接库、可执行文件)

    本文把makefile 分成了三份:生成可执行文件的makefile,生成静态链接库的makefile,生成动态链接库的makefile. 这些makefile都很简单,一般都是一看就会用,用法也很容 ...

  4. iOS开发:代码通用性以及其规范 第二篇(猜想iOS中实现TableView内部设计思路(附代码),以类似的思想实现一个通用的进度条)

    在iOS开发中,经常是要用到UITableView的,我曾经思考过这样一个问题,为什么任何种类的model放到TableView和所需的cell里面,都可以正常显示?而我自己写的很多view却只是能放 ...

  5. Ios导航栏返回到指定的页面

    在自己的项目实现中有这样的一个需求.一般情况下我们的导航栏返回按钮,是上个页面跳转过来,点击返回按钮返回到上来界面.但是在实际需求中有的并不是这么简单的.有的界面返回是只确定的界面.所以当时自己在实现 ...

  6. mysql-connector-java-5.1.22下载

    java连接mysql时,需要安装驱动.如果未安装,会出现找不到“com.mysql.jdbc.Driver”的错误. 最新版驱动是:mysql-connector-java-5.1.22 下载地址: ...

  7. Error: failure: repodata/repomd.xml from fedora: [Errno 256] No more mirrors to try.

    记录一个小问题,重新买的linux换yum源的时候一直提示: Error: failure: repodata/repomd.xml ] No more mirrors to try. 一直说那个XM ...

  8. PHP判断ajax请求:HTTP_X_REQUESTED_WITH

    PHP判断ajax请求的原理: 在发送ajax请求的时候,我们可以通过XMLHttpRequest这个对象,创建自定义的 header头信息, 在jquery框架中,对于通过它的$.ajax, $.g ...

  9. C语言 · 最长单词

    算法提高 最长单词   时间限制:1.0s   内存限制:512.0MB      编写一个函数,输入一行字符,将此字符串中最长的单词输出. 输入仅一行,多个单词,每个单词间用一个空格隔开.单词仅由小 ...

  10. Ext.ux.grid.feature.Searching 解析查询参数,动态产生linq lambda表达式

    上篇文章中http://www.cnblogs.com/qidian10/p/3209439.html我们介绍了如何使用Grid的查询组建,而且将查询的参数传递到了后台. 那么我们后台如何介绍参数,并 ...