CF1142E/1143B Lynyrd Skynyrd

  • 开始读错题了,以为是连续的一段,敲完后才发现是 \(subsequence\) ...
  • 考虑对于 \(a\) 中的每个 \(a_i\) 找到它在排列 \(p\) 中的下一个元素的最左位置 \(j\) ,从 \(i\) 到 \(j\) 连一条边,这样就形成了一个森林.
  • 然后 \(dfs\) 遍历一下,用一个栈来存储当前在路径中的点,若当前节点为 \(u\) ,而路径长 \(\geq n\) ,说明路径中从 \(u\) 开始的 \(n\) 个位置构成了一个 \(cyclic\ shift\) .
  • 这样就可以处理出以点 \(i\) 为第一个元素,能找到的 \(cyclic\ shift\) 最后一个元素的最左位置 \(minr_i\).对这个东西取一下后缀 \(\min\) ,则它表示后缀 \(i\sim n\) 中能找到的 \(cyclic\ shift\) 最后一个元素的最左位置 .
  • 对于每个询问 \((l,r)\) ,只需判断是否有 \(r \leq minr_l​\) 即可.
  • 时间复杂度 \(O(n+Q)\).
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define mp make_pair
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=2e5+10;
int n,m,Q;
int a[MAXN],b[MAXN],nxp[MAXN];
int pos[MAXN];
queue<char> buf;
int cnt=0,head[MAXN],to[MAXN],nx[MAXN];
inline void addedge(int u,int v)
{
++cnt;
to[cnt]=v;
nx[cnt]=head[u];
head[u]=cnt;
}
int vis[MAXN];
int minr[MAXN];
int stk[MAXN],tp=0;
void dfs(int u)
{
vis[u]=1;
stk[++tp]=u;
if(tp>=n)
minr[u]=min(minr[u],stk[tp-n+1]);
for(int i=head[u];i;i=nx[i])
{
int v=to[i];
if(!vis[v])
dfs(v);
}
--tp;
}
int main()
{
n=read(),m=read(),Q=read();
for(int i=1;i<=n;++i)
a[i]=read();
for(int i=1;i<=m;++i)
b[i]=read();
a[0]=a[n],a[n+1]=a[1];
for(int i=1;i<=n;++i)
nxp[a[i]]=a[i+1];
for(int i=m;i>=1;--i)
{
pos[b[i]]=i;
int pre=nxp[b[i]];
if(pos[pre])
addedge(pos[pre],i);
}
memset(minr,0x7f,sizeof minr);
for(int i=m;i>=1;--i)
{
if(!vis[i])
dfs(i);
minr[i]=min(minr[i],minr[i+1]);
}
while(Q--)
{
int l=read(),r=read();
if(minr[l]<=r)
buf.push('1');
else
buf.push('0');
}
while(!buf.empty())
{
putchar(buf.front());
buf.pop();
}
return 0;
}

CF1142E/1143B Lynyrd Skynyrd的更多相关文章

  1. 【CF1142B】Lynyrd Skynyrd

    [CF1142B]Lynyrd Skynyrd 题面 洛谷 题解 假设区间\([l,r]\)内有一个循环位移,那么这个循环位移一定有一个最后的点,而这个点在循环位移中再往前移\(n-1\)个位置也一定 ...

  2. 【题解】CF1142B Lynyrd Skynyrd(倍增)

    [题解]CF1142B Lynyrd Skynyrd(倍增) 调了一个小时原来是读入读反了.... 求子段是否存在一个排列的子序列的套路是把给定排列看做置换,然后让给定的序列乘上这个置换,问题就转化为 ...

  3. 『题解』Codeforces1142B Lynyrd Skynyrd

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently Lynyrd and Skynyrd went to a ...

  4. B. Lynyrd Skynyrd

    传送门: 题意:给出 n,m,q 然后给出模板串,从1-n数字只出现一次,然后给出长度为m的要询问的串. q组询问:每组询问输出 ‘1’或者‘0’ 每组询问 一对x,y    问在x到y中有没有模板串 ...

  5. Codeforces 1142B Lynyrd Skynyrd

    ---恢复内容开始--- 题意:给你一个排列p和数组a,有t组询问,每次询问一个区间的子序列中是否有p的一个循环排列. 思路:以p = [3, 1, 2]举例, 我们扫描数组b,假设当前数字是1,那么 ...

  6. CF1142B Lynyrd Skynyrd

    题目 有两种做法: 第一种是\(O(nlog\ n)\)的. 我们预处理两个数组: \(pre_i\)表示\(p\)中\(i\)前面的那个数是\(pre_i\). \(lst_i\)表示\(a\)中\ ...

  7. 「CF1142B」Lynyrd Skynyrd

    传送门 Luogu 解题思路 发现一个性质: 对于排列的任何一个循环位移,排列中的同一个数的前驱肯定是不变的. 而且,如果一个排列的循环位移是某一个区间的子序列,那么这个循环位移的结尾的 \(n-1\ ...

  8. Codeforces Round #549 (Div. 1)

    今天试图用typora写题解 真开心 参考 你会发现有很多都是参考的..zblzbl Codeforces Round #549 (Div. 1) 最近脑子不行啦 需要cf来缓解一下 A. The B ...

  9. Codeforces Round #549 (Div. 2) 训练实录 (5/6)

    The Doors +0 找出输入的01数列里,0或者1先出完的的下标. Nirvana +3 输入n,求1到n的数字,哪个数逐位相乘的积最大,输出最大积. 思路是按位比较,从低到高,依次把小位换成全 ...

随机推荐

  1. C语言位域解析&符号位扩展规则

    从一个例子说起: int main(void){ union{ int i; struct{ ; ; ; }bits; }num; printf("Input an integer for ...

  2. angular5 路由传参的几种方式

    此处介绍三种方式 方式一: 问号后面带的参数, 例如:/product?id=1&name=iphone还可以是: [routerLink]="['/books']" [q ...

  3. Java 常用对象-Object类

    2017-10-31 23:42:08 Object类:类 Object 是类层次结构的根类.每个类都使用 Object 作为超类.所有对象(包括数组)都实现这个类的方法. 或者说,每个类都直接或者间 ...

  4. 实训10a--用数据值填充下拉列表

    1.新建mvc4项目,选择基本模板. (1)点击“开始->所有程序->Microsoft Visual Studio 2012->Visual Studio 2012”菜单,打开Vi ...

  5. 关于一致性hash详细

    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈 ...

  6. LeetCode--058--最后一个单词的长度

    问题描述 给定一个仅包含大小写字母和空格 ' ' 的字符串,返回其最后一个单词的长度. 如果不存在最后一个单词,请返回 0 . 说明:一个单词是指由字母组成,但不包含任何空格的字符串. 示例: 输入: ...

  7. Jersey 2.x 基于 Servlet 的服务器端应用

    下面的依赖通常应用到应用服务器上(servlet 容器),同时这个应用服务器上没有整合任何 JAX-RS 的实现. 因此,这个应用服务器需要包含有 JAX-RS API 和 Jersey 实现,同时部 ...

  8. Professional layer CodeForces - 1103D (状压,gcd)

    大意: 给定$n$元素序列$a$, 现在想要让$gcd(a_1,a_2,...,a_n)=1$. 对于每个$a_i$可以除以一个不超过$k$的因子, 代价为$e_i$, 假设一共选择了$x$个元素去除 ...

  9. python-day4笔记

    1.文件后缀名对python运行没关系 2.Python解释器执行python程序的过程:python3 C:\test.py 1)启动python解释器(内存中) 2)将C:\test.py内容从硬 ...

  10. TCP/IP四层与OSI七层模型

      OSI七层和TCP/IP四层的关系 1.1 OSI引入了服务.接口.协议.分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型. 1.2 OSI先有模型,后有协议,先有标准,后进行实 ...