POJ 2987 - Firing - [最大权闭合子图]
题目链接:http://poj.org/problem?id=2987
Time Limit: 5000MS Memory Limit: 131072K
Description
You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do some firings. You’re now simply too mad to give response to questions like “Don’t you think it is an even more stupid decision to have signed them?”, yet calm enough to consider the potential profit and loss from firing a good portion of them. While getting rid of an employee will save your wage and bonus expenditure on him, termination of a contract before expiration costs you funds for compensation. If you fire an employee, you also fire all his underlings and the underlings of his underlings and those underlings’ underlings’ underlings… An employee may serve in several departments and his (direct or indirect) underlings in one department may be his boss in another department. Is your firing plan ready now?
Input
The input starts with two integers n (0 < n ≤ 5000) and m (0 ≤ m ≤ 60000) on the same line. Next follows n + m lines. The first n lines of these give the net profit/loss from firing the i-th employee individually bi (|bi| ≤ 107, 1 ≤ i ≤ n). The remaining m lines each contain two integers i and j (1 ≤ i, j ≤ n) meaning the i-th employee has the j-th employee as his direct underling.
Output
Output two integers separated by a single space: the minimum number of employees to fire to achieve the maximum profit, and the maximum profit.
Sample Input
5 5
8
-9
-20
12
-10
1 2
2 5
1 4
3 4
4 5
Sample Output
2 2
Hint
题意:
题目给出N个人,M个直属关系;
N个人每个人都有一个“解雇收益值”,代表公司解雇这个人收益为多少(为负就代表损失);
M个直属关系:(u, v)代表了,解雇u则必须解雇v;
求公司最少解雇几个人之后,可获得最大收益,为多少;
题解:
显然解雇的人满足闭合图关系,而受益最大则是要求最大点权,故本题就是一个最大权闭合子图;
参考http://www.cnblogs.com/dilthey/p/7565206.html即可。
当然,怎么求出被炒的人呢?
在跑完最大流后,残量网络中超级源点s到与其直接相连的点中:
如果这条边不满流,就属于图S(分割后的两个图中包含超级源点s的那个图),则是属于被解雇的人,就标记;
如果这条边满流,就属于割集,则这条边的终点不是解雇的人;
然后剩下的,由于图S中,除了与s相连的边权值不为INF外,其他必然为INF,必然不满流,而如果走到了连接t的边,又会变成满流,就会的停下来;
所以只要按着满流与否的条件,DFS下去,不断标记不满流边的终点即可。
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#define MAXN 5005
#define MAXM 60005
#define INF 0x3f3f3f3f
typedef long long ll;
using namespace std;
int n,m;
ll sum;
int cnt;
struct Edge{
int u,v;
ll c,f;
};
struct Dinic
{
int s,t;
vector<Edge> E;
vector<int> G[MAXN];
bool vis[MAXN];
int lev[MAXN];
int cur[MAXN];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int from,int to,ll cap)
{
E.push_back((Edge){from,to,cap,});
E.push_back((Edge){to,from,,});
int m=E.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int> q;
q.push(s);
lev[s]=;
vis[s]=;
while(!q.empty())
{
int now=q.front(); q.pop();
for(int i=,_size=G[now].size();i<_size;i++)
{
Edge edge=E[G[now][i]];
int nex=edge.v;
if(!vis[nex] && edge.c>edge.f)
{
lev[nex]=lev[now]+;
q.push(nex);
vis[nex]=;
}
}
}
return vis[t];
}
ll dfs(int now,ll aug)
{
if(now==t || aug==) return aug;
ll flow=,f;
for(int& i=cur[now],_size=G[now].size();i<_size;i++)
{
Edge& edge=E[G[now][i]];
int nex=edge.v;
if(lev[now]+ == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>)
{
edge.f+=f;
E[G[now][i]^].f-=f;
flow+=f;
aug-=f;
if(aug==) break;
}
}
return flow;
}
ll maxflow()
{
ll flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}dinic; bool vis[MAXN];
void dfs(int u)
{
for(int i=,_size=dinic.G[u].size();i<_size;i++)
{
Edge& e=dinic.E[dinic.G[u][i]];
if(!vis[e.v] && e.c>e.f)
{
vis[e.v]=;
dfs(e.v);
}
}
}
int main()
{
scanf("%d%d",&n,&m);
sum=;
dinic.init(,n+);
dinic.s=, dinic.t=n+;
for(int i=,w;i<=n;i++)
{
scanf("%d",&w);
if(w>)
{
sum+=(ll)w;
dinic.addedge(dinic.s,i,w);
}
else if(w<) dinic.addedge(i,dinic.t,-w);
}
for(int i=,u,v;i<=m;i++)
{
scanf("%d%d",&u,&v);
dinic.addedge(u,v,INF);
}
//建图完毕
ll max_flow=dinic.maxflow();
//计算出最大流,同时得到残存网络 memset(vis,,sizeof(vis));
dfs(dinic.s);//遍历残存网络,找出被解雇的人
cnt=;
for(int i=;i<=n;i++) if(vis[i]) cnt++; printf("%d %I64d\n",cnt,sum-max_flow);
}
POJ 2987 - Firing - [最大权闭合子图]的更多相关文章
- poj 2987 Firing 最大权闭合图
题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...
- POJ 2987 Firing | 最大权闭合团
一个点带权的图,有一些指向关系,删掉一个点他指向的点也不能留下,问子图最大权值 题解: 这是最大权闭合团问题 闭合团:集合内所有点出边指向的点都在集合内 构图方法 1.S到权值为正的点,容量为权值 2 ...
- poj2987 Firing 最大权闭合子图 边权有正有负
/** 题目:poj2987 Firing 最大权闭合子图 边权有正有负 链接:http://poj.org/problem?id=2987 题意:由于金融危机,公司要裁员,如果裁了员工x,那么x的下 ...
- 【POJ 2987】Firing (最小割-最大权闭合子图)
裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...
- poj 2987 Firing【最大权闭合子图+玄学计数 || BFS】
玄学计数 LYY Orz 第一次见这种神奇的计数方式,乍一看非常不靠谱但是仔细想想还卡不掉 就是把在建图的时候把正权变成w*10000-1,负权变成w*10000+1,跑最大权闭合子图.后面的1作用是 ...
- 2018.06.27Firing(最大权闭合子图)
Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 11558 Accepted: 3494 Description ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
- [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...
随机推荐
- Tomcat------如何打开配置界面
如图操作即可:
- C#(少用的)
挖一挖C#中那些我们不常用的东西之系列(1)——ToDictionary,ToLookup 挖一挖C#中那些我们不常用的东西之系列(2)——IsXXX 系列方法 挖一挖C#中那些我们不常用的东西之系列 ...
- nodejs服务器部署教程三
安装mongodb数据库 如何在ubuntu上安装mongodb数据库,其实官方文档写的很清楚啦 sudo apt-key adv --keyserver hkp://keyserver.ubuntu ...
- c 各种编译器(gcc clang)
很多时候,出现一些类似GNU,GCC,CLANG,LLVM等与编译器有关的名词的时候,都不太清楚它到底是干嘛的,理解这些东西后, 对于xcode中很多配置型的需求修改起来都会得心应手,因此有必要了解透 ...
- iOS开发--改变tableHeaderView的高度
1.先获取tableHeaderView 2.设置它的frame 3.将该view设置回tableview UIView *view=tableView. tableHeaderView; view. ...
- Django SimpleCMDB 使用序列化
如下,前面我们是使用 urllib 方法来转换并传递数据的: [root@localhost ~]$ tail /data/script/getHostInfo.py if __name__ == ' ...
- Unity Animation需要Inspector右键打开Debug模式,然后勾选Legacy,最后再Inspector右键打开Normal
- CopyTransform
// TransformCopier.cs v 1.1 // homepage: http://wiki.unity3d.com/index.php/CopyTransform using Unity ...
- 顶点纹理shader
Shader "Custom/VertDisplace" { Properties { _MainTex ("Base (RGB)", 2D) = " ...
- React Native 入门到原理(详解)
抛砖引玉(帮你更好的去理解怎么产生的 能做什么) 砖一.动态配置 由于 AppStore 审核周期的限制,如何动态的更改 app 成为了永恒的话题.无论采用何种方式,我们的流程总是可以归结为以下三部曲 ...