洛谷 P1896 [SCOI2005]互不侵犯

洛谷传送门

题目描述

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

注:数据有加强(2018/4/25)

输入格式

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

输出格式

所得的方案数

输入输出样例

输入 #1复制

输出 #1复制

题解:

原谅我一开始看到题还以为是爆搜。。。

其实是一道状态压缩的题目。

蒟蒻自己一个比较大的进步就是把自己状态设置对了...

设置:\(dp[i][j][k]\)为第\(i\)行状态为\(j\)、已经用了\(k\)个国王时的方案数。

状态压缩大体有这么几步:设置状态\(\rightarrow\)考虑转移方式\(\rightarrow\)按转移方式考虑预处理和判断转移条件\(\rightarrow\)开始转移\(\rightarrow\)统计答案。

那么我们设置好状态,开始考虑转移方式:我们发现,若是想从第\(i-1\)行开始转移,转移的条件一是当前和上一次的状态,但是,这些状态的改变必然还会改变国王的个数。也就是说,这数组的两维是有联系的,是自变量和因变量的关系。所以我们因此想到,既然是自变量和因变量的关系,我们莫不如由此构建一个映射,存下来每个状态和每个状态需要的国王人数。这样我们转移的时候就没啥问题了。

如何预处理呢?我们想到,我们需要按行处理状态,每个状态有放国王和不放国王两种选择。因为是预处理,我们是肯定不能用递推和\(DP\)的(你想干啥)

所以我们考虑搜索。

一次搜索可以处理出所有合法的行的方式。

这里插一嘴,因为我们已经把所有合法的行的方式都求出来了,所以我们没必要再把\(dp\)数组的第二维开那么大,构建好映射关系之后,直接用\(cnt\)代替这个二进制状态即可。(因为\(1-cnt\)的每个数都对应着一个数组\(s[i]\)作为状态。)

然后再转移的时候进行判断是否合法就可以。

转移方程:

\[dp[i][j][l]+=dp[i-1][k][l-num[j]]
\]

这里的\(k,j\)分别表示一种状态。

代码:

#include<cstdio>
#define int long long
using namespace std;
int n,K,cnt,ans;
int s[100],num[100];
int dp[10][100][110];
//dp[i][j][k]表示前i-1行放完,第i行状态为j、有k个国王时的方案数
//状态0/1:0:国王攻击不到;1:被国王占领
void dfs(int pos,int st,int tot)
{
if(pos>=n)
{
s[++cnt]=st;
num[cnt]=tot;
return;
}
dfs(pos+1,st,tot);
dfs(pos+2,st+(1<<pos),tot+1);
}
signed main()
{
scanf("%lld%lld",&n,&K);
dfs(0,0,0);
for(int i=1;i<=cnt;i++)
dp[1][i][num[i]]=1;
for(int i=2;i<=n;i++)
for(int j=1;j<=cnt;j++)
for(int k=1;k<=cnt;k++)
{
if(s[j]&s[k])
continue;
else if(s[j]&(s[k]>>1))
continue;
else if(s[j]&(s[k]<<1))
continue;
else
for(int l=num[j];l<=K;l++)
dp[i][j][l]+=dp[i-1][k][l-num[j]];
}
ans=0;
for(int i=0;i<=cnt;i++)
ans+=dp[n][i][K];
printf("%lld",ans);
return 0;
}

SCOI 2005 互不侵犯的更多相关文章

  1. C++之路进阶——codevs2451(互不侵犯)

    2451 互不侵犯 2005年省队选拔赛四川  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master       题目描述 Description 在N×N的棋盘里 ...

  2. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  3. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  4. 【状压DP】bzoj1087 互不侵犯king

    一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...

  5. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  6. SCOI2005互不侵犯King

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1499  Solved: 872[Submit][S ...

  7. 洛谷1377 M国王 (SCOI2005互不侵犯King)

    洛谷1377 M国王 (SCOI2005互不侵犯King) 本题地址:http://www.luogu.org/problem/show?pid=1377 题目描述 天天都是n皇后,多么无聊啊.我们来 ...

  8. CODEVS 2451 互不侵犯

    2451 互不侵犯 题目描述 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格 ...

  9. 洛谷 P1896 互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

随机推荐

  1. Codeforces Global Round 5

    传送门 A. Balanced Rating Changes 签到,分正负搞一下就行. B. Balanced Tunnel 题意: 给出\(n\)辆车的进洞顺序和出洞顺序,问有多少量车实现了洞中超车 ...

  2. 201871010109-胡欢欢《面向对象程序设计(java)》第一周学习总结

    <面向对象程序设计(java)>第一周学习总结 正文开头: 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 ...

  3. VIJOS-P1167 南蛮图腾

    洛谷 P1498 南蛮图腾 洛谷传送门 JDOJ 1325: VIJOS-P1167 南蛮图腾 JDOJ传送门 Description 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少 ...

  4. Java内存中的常量池

    1,java内存模型简介 <深入理解java虚拟机>里将java内存分为如下五个模块: 堆-堆是所有线程共享的,主要用来存储对象. 其中,堆可分为:新生代和老年代两块区域.使用NewRat ...

  5. Java连载46-Java中的多态

    一.多态的语法 1.关于多态中涉及到几个概念 (1)向上转型(upcasting) 子类型转换为父类型,又被称为自动类型转换 (2)向下转型(downcasting) 父类型转换为子类型,又被称为强制 ...

  6. EEPROM的操作---SPI接口和I2C接口

    参考:http://blog.csdn.net/yuanlulu/article/details/6163106 ROM最初不能编程,出厂什么内容就永远什么内容,不灵活.后来出现了PROM,可以自己写 ...

  7. Linux 部署 rabbitMQ集群

    1. 部署Erlang 1.1 RabbitMQ依赖于Erlang,版本对应请查看 https://www.rabbitmq.com/which-erlang.html 1.2 下载安装Erlang ...

  8. eclipse强行停止buliding workspace

    使用Eclipse的过程中可能会遇到buliding workspace卡在一半走不动的情况. 出现这个情况往往是因为Eclipse太调皮了,需要拉出去打屁股,打一顿就好了. 开玩笑的,事实上出现这个 ...

  9. SpringBoot(15)—@Conditional注解

    SpringBoot(15)-@Conditional注解 作用 @Conditional是Spring4新提供的注解,它的作用是按照一定的条件进行判断,满足条件的才给容器注册Bean. 一.概述 1 ...

  10. C#上手练习5(GOTO语句)

    C# goto 语句用于直接在一个程序中转到程序中的标签指定的位置,标签实际上由标识符加上冒号构成 语法形式如下. goto Labell;    语句块 1;Labell    语句块 2; 如果要 ...