题意

给定两个字符串,求长度大于等于k的公共子串数。

分析

  • 将两个字符串中间加个特殊字符拼接,跑后缀数组。
  • 将题目转化为对每一个后缀求\(\sum_{j=1}^{i-1}lcp(i,j)\),且后缀\(i\)和\(j\)属于不同字符串。
  • 由于\(lcp\)只跟\(h\)数组的区间最小值有关,因此对于单调递减的\(h[i]\)我们可以合并贡献和个数,维护一个单调栈。
  • 分别统计\(a\)串对\(b\)的贡献和\(b\)串对\(a\)的贡献。

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=3e5+50;
char a[N],b[N],s[N];
int sa[N],rk[N],h[N];
int t[N],t2[N],c[N];
int al,bl,n,k;
void build(int n,int m){
n++;
int *x=t,*y=t2;
for(int i=0;i<m;i++){
c[i]=0;
}
for(int i=0;i<n;i++){
c[x[i]=s[i]]++;
}
for(int i=1;i<m;i++){
c[i]+=c[i-1];
}
for(int i=n-1;i>=0;i--){
sa[--c[x[i]]]=i;
}
for(int k=1;k<=n;k*=2){
int p=0;
for(int i=n-k;i<n;i++){
y[p++]=i;
}
for(int i=0;i<n;i++){
if(sa[i]>=k){
y[p++]=sa[i]-k;
}
}
for(int i=0;i<m;i++){
c[i]=0;
}
for(int i=0;i<n;i++){
c[x[y[i]]]++;
}
for(int i=1;i<m;i++){
c[i]+=c[i-1];
}
for(int i=n-1;i>=0;i--){
sa[--c[x[y[i]]]]=y[i];
}
swap(x,y);
p=1;
x[sa[0]]=0;
for(int i=1;i<n;i++){
x[sa[i]]=y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+k]==y[sa[i]+k]?p-1:p++;
}
if(p>=n){
break;
}
m=p;
}
n--;
for(int i=0;i<=n;i++){
rk[sa[i]]=i;
}
int k=0;
for(int i=0;i<n;i++){
if(k){
k--;
}
int j=sa[rk[i]-1];
while(s[i+k]==s[j+k]){
k++;
}
h[rk[i]]=k;
}
}
void debug(){
for(int i=1;i<=n;i++){
for(int j=sa[i];j<n;j++){
printf("%c",s[j]);
}
printf("\n");
}
for(int i=1;i<=n;i++){
printf("%d ",sa[i]);
}
printf("\n");
for(int i=0;i<n;i++){
printf("%d ",rk[i]);
}
printf("\n");
for(int i=1;i<=n;i++){
printf("%d ",h[i]);
}
printf("\n");
}
//答案就是对任意两个不同后缀a[i...]和b[j...]的sum(lcp(ai,bj)-k+1)
//两个单调栈,一个维护h[i],一个维护贡献之和
ll he[N],ct[N];
ll solve(){
//考虑用单调栈优化到O(n),即对于每一个后缀求与前面后缀的lcp之和,不重不漏
ll ans=0;
//当前后缀与前面每个后缀的lcp之和
//由性质可知,当前后缀和前面某一个后缀的lcp应该是之间的h[i]最小值
//因此可以将递减的h[i]合并为最小的那个h[min]*cnt
ll sum=0;
int tp=0;
for(int i=2;i<=n;i++){
if(h[i]<k){
tp=0;
sum=0;
continue;
}
ll cnt=0;
//维护单调栈,由于lcp只跟区间h最小值有关,将所有栈顶大于当前h[i]的都合并
while(tp && he[tp]>h[i]){
//减去无效栈顶的贡献(h[i]-k+1)
sum-=(he[tp]-k+1)*ct[tp];
//暂时累计cnt,存储到新的栈顶
cnt+=ct[tp];
//栈顶出栈
tp--;
}
//入栈,保持单调性
he[++tp]=h[i];
if(sa[i-1]<al) {
//有效贡献的串,个数加1
cnt++;
}
ct[tp]=cnt;
//累加栈顶贡献
sum+=(he[tp]-k+1)*ct[tp];
if(sa[i]>al){
//将当前累加的贡献加到答案中,即b串后缀与前面所有a串后缀的lcp之和
ans+=sum;
}
}
tp=sum=0;
for(int i=2;i<=n;i++){
if(h[i]<k){
tp=0;
sum=0;
continue;
}
ll cnt=0;
while(tp && he[tp]>h[i]){
sum-=(he[tp]-k+1)*ct[tp];
cnt+=ct[tp];
tp--;
}
if(sa[i-1]>al){
he[++tp]=h[i];
ct[tp]=cnt+1;
sum+=(he[tp]-k+1)*ct[tp];
}else{
he[++tp]=h[i];
ct[tp]=cnt;
sum+=(he[tp]-k+1)*ct[tp];
}
//累加b串后缀与前面所有a串后缀的lcp之和
if(sa[i]<al){
ans+=sum;
}
}
return ans;
}
int main(){
// freopen("in.txt","r",stdin);
while(~scanf("%d",&k) && k){
scanf("%s",a);
scanf("%s",b);
al=strlen(a);
bl=strlen(b);
for(int i=0;i<al;i++){
s[i]=a[i];
}
s[al]='~';
for(int i=0;i<bl;i++){
s[al+1+i]=b[i];
}
n=al+bl+1;
s[n]='\0';
build(n,300);
// debug();
ll ans=solve();
printf("%lld\n",ans);
}
return 0;
}

poj3415_Common Substrings的更多相关文章

  1. [LeetCode] Unique Substrings in Wraparound String 封装字符串中的独特子字符串

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  2. Leetcode: Unique Substrings in Wraparound String

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  3. CSU-1632 Repeated Substrings (后缀数组)

    Description String analysis often arises in applications from biology and chemistry, such as the stu ...

  4. CF451D Count Good Substrings (DP)

    Codeforces Round #258 (Div. 2) Count Good Substrings D. Count Good Substrings time limit per test 2 ...

  5. LA4671 K-neighbor substrings(FFT + 字符串Hash)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/19225 Description The Hamming distance between two s ...

  6. 后缀数组---New Distinct Substrings

    Description Given a string, we need to find the total number of its distinct substrings. Input T- nu ...

  7. Codeforces Round #258 D Count Good Substrings --计数

    题意:由a和b构成的字符串,如果压缩后变成回文串就是Good字符串.问一个字符串有几个长度为偶数和奇数的Good字串. 分析:可知,因为只有a,b两个字母,所以压缩后肯定为..ababab..这种形式 ...

  8. SPOJ 694. Distinct Substrings (后缀数组不相同的子串的个数)转

    694. Distinct Substrings Problem code: DISUBSTR   Given a string, we need to find the total number o ...

  9. Codeforces Round #306 (Div. 2) A. Two Substrings 水题

    A. Two Substrings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

随机推荐

  1. 【原】docker部署单节点consul

    docker下部署单节点的consul,最重要的是在run consul时,配置-bootstrap-expect=1 docker run --name consul1 -d -p : -p : - ...

  2. idea导入ssm javaweb maven项目

    本文笔者辛苦整理, 除了为方便大家贴的maven安装配置和方便的现有项目, 如转载请注明: https://www.cnblogs.com/m-yb/p/11229320.html idea导入ssm ...

  3. X-Admin&ABP框架开发-消息通知

    业务型网站使用过程中,消息通知是一个不可或缺的功能,采用站内通知.短信通知.邮件通知.微信通知等等各种方式都有,ABP框架对这部分工作已经封装的很好了,站在巨人的肩膀上,一览全貌,带来的就是心情舒畅. ...

  4. java 第三章

       if  选择结构:        语法:if(条件){ //代码块1 } if——else选择结构 语法:if(条件){ //代码块1 }else{ //代码块2 } 多重if选择结构 语法:i ...

  5. shiro解析ini文件

    来吧,看看shiro是怎么解析ini文件的,这里假设ini文件在classpath下,名字叫做shiro.ini Factory<org.apache.shiro.mgt.SecurityMan ...

  6. Heap Greedy

    1 239 Sliding Window Maximun 双端队列 public int[] maxSlidingWindow(int[] nums, int k) { if (nums == nul ...

  7. 基于Spark Grahpx+Neo4j 实现用户社群发现

    上一篇文章知识图谱在大数据中的应用我们介绍了知识图谱的一些概念和应用场景,今天我们就来看一个具体的应用案例了解下知识图谱的应用.用户增长对于一个APP的生存起到了至关重要的作用,没有持续的用户增长,再 ...

  8. kafka集群跨双网段及多网段通信问题解决

    一.问题场景: 实际生产环境总存在很多kafka集群跨网段的问题.kafka集群可能存在多个网卡,对应多个网段.不同网段之间需要同时与集群通信,即跨网段生产消费问题. 二.解决方法:自定义listen ...

  9. Django安装 测试、导入项目以及运行开发服务器

    安装Django  下载Django包,解压缩. CMD 进入解压路径下. 执行:python setup.py install 增加环境变量: C:\Python27\Scripts 测试djang ...

  10. 【iOS】Receiver type 'XXX' for instance message is a forward declaration

    今天遇到这个错误.刚开始字体太大,没显示全,后来调小字体之后看到了完整提示信息: 之后就忽然想起没引入相关的类,添加 #import "RDVTabBarItem.h" 就行了.