percpu变量的关键就是:要求根据CPU的个数,在内存中生成多份拷贝,并且能够根据变量名和CPU编号,正确的对各个CPU的变量进行寻址。

采用per-cpu变量有下列好处:所需数据很可能存在于处理器的缓存中,因此可以更快速地访问。如果在多处理器系统中多个CPU可能同时访问变量,会引发一些通信方面的问题,采用percpu变量恰好规避了这个问题。

这里读者只需要记住percpu变量每个CPU都有一个就行了,看完本篇文章后,再回来阅读前面加粗的话,相信会有更深刻的理解。

首先来看如何定义一个percpu变量:

DEFINE_PER_CPU(int, cpu_number);

#define DEFINE_PER_CPU(type, name) \
__attribute__((__section__(".data.percpu"))) __typeof__(type) per_cpu__##name

上面的代码定义了一个类型为int,名字为per_cpu_cpu_number的percpu变量。__typeof__(type)得到的就是int,而per_cpu__##name得到的就是per_cpu_cpu_number,并且通过__section__把这个变量放到名为.data.percpu的数据段。因此在编译时所有的percpu变量都会统一放到.data.percpu数据段,当内核启动后,会根据检测到的cpu个数从数据段.data.percpu为各个CPU单独复制一份。start_kernel函数调用setup_per_cpu_areas()来完成这个工作,setup_per_cpu_areas定义如下:

//__per_cpu_offset数组用来保存CPU对应 percpu段 相对ptr的偏移
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; static void __init setup_per_cpu_areas(void)
{
unsigned long size, i;
char *ptr;
//取CPU的数量
unsigned long nr_possible_cpus = num_possible_cpus(); /* Copy section for each CPU (we discard the original) */
/* 计算每个CPU所需要的percpu段大小。
*
* @PERCPU_ENOUGH_ROOM:__per_cpu_end - __per_cpu_start + PERCPU_MODULE_RESERVE
* @ALIGN():使percpu段大小向上对齐
*/
size = ALIGN(PERCPU_ENOUGH_ROOM, PAGE_SIZE);
//分配内存
ptr = alloc_bootmem_pages(size * nr_possible_cpus); for_each_possible_cpu(i) {
/* __per_cpu_start对于每个CPU来讲是个定值,它和__per_cpu_end都是由链接器生成的
* 计算每个CPU的__per_cpu_start相对于真实存放percpu段线性地址 的偏移
* 请参考代码下方的示意图
* memcpy拷贝所有percpu变量至每个CPU自己的percpu段
*/
__per_cpu_offset[i] = ptr - __per_cpu_start;
memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
ptr += size;
}
}

那么在编译期源程序如何访问percpu变量呢?内核定义了几个宏来实现对percpu变量的访问:

//smp_processor_id()可以返回当前活动处理器的ID,用作下面的cpu参数。
#define per_cpu(var, cpu) (*({ \
extern int simple_identifier_##var(void); \
RELOC_HIDE(&per_cpu__##var, __per_cpu_offset(cpu)); }))

这里我们举一个例子进行说明:假设访问per_cpu(var,1),由于percpu变量在定义时由DEFINE_PER_CPU展开成per_cpu_var,因此RELOC_HIDE的第一个参数就是编译时per_cpu_var的地址,第二个参数__per_cpu_offset(cpu)为前面setup_per_cpu_areas计算出来的,它表示运行时复制的percpu数据区首地址与编译期确定的首地址的差值,这两个值相加就是实际存储percpu变量的地址。示意图如下:

在更(geng)新的内核(2.6.32)中,percpu变量的定义(DEFINE_PER_CPU)和存取(per_cpu(var, cpu))方式没有发生改变,主要是__per_cpu_offset数组的初始化方式发生了改变,见arch\x86\kernel\setup_percpu.c中函数:setup_per_cpu_areas()。

同步与互斥_percpu变量的更多相关文章

  1. UNIX环境高级编程——线程同步之互斥锁、读写锁和条件变量(小结)

    一.使用互斥锁 1.初始化互斥量 pthread_mutex_t mutex =PTHREAD_MUTEX_INITIALIZER;//静态初始化互斥量 int pthread_mutex_init( ...

  2. 【转载】同步和互斥的POSIX支持(互斥锁,条件变量,自旋锁)

    上篇文章也蛮好,线程同步之条件变量与互斥锁的结合: http://www.cnblogs.com/charlesblc/p/6143397.html   现在有这篇文章: http://blog.cs ...

  3. 转载自~浮云比翼:Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)

    Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)   介绍:什么是线程,线程的优点是什么 线程在Unix系统下,通常被称为轻量级的进程,线程虽然不是进程,但却可 ...

  4. Step by Step:Linux C多线程编程入门(基本API及多线程的同步与互斥)

    介绍:什么是线程,线程的优点是什么 线程在Unix系统下,通常被称为轻量级的进程,线程虽然不是进程,但却可以看作是Unix进程的表亲,同一进程中的多条线程将共享该进程中的全部系统资源,如虚拟地址空间, ...

  5. Linux驱动之同步、互斥、阻塞的应用

    同步.互斥.阻塞的概念: 同步:在并发程序设计中,各进程对公共变量的访问必须加以制约,这种制约称为同步. 互斥机制:访问共享资源的代码区叫做临界区,这里的共享资源可能被多个线程需要,但这些共享资源又不 ...

  6. linux下的同步与互斥

    linux下的同步与互斥 谈到linux的并发,必然涉及到线程之间的同步和互斥,linux主要为我们提供了几种实现线程间同步互斥的 机制,本文主要介绍互斥锁,条件变量和信号量.互斥锁和条件变量包含在p ...

  7. linux内核同步之每CPU变量、原子操作、内存屏障、自旋锁【转】

    转自:http://blog.csdn.net/goodluckwhh/article/details/9005585 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 一每 ...

  8. 【Java并发基础】并发编程领域的三个问题:分工、同步和互斥

    前言 可以将Java并发编程抽象为三个核心问题:分工.同步和互斥. 这三个问题的产生源自对性能的需求.最初时,为提高计算机的效率,当IO在等待时不让CPU空闲,于是就出现了分时操作系统也就出现了并发. ...

  9. 线程同步 - POSIX互斥锁

    线程同步 - POSIX互斥锁 概括 本文讲解POSIX中互斥量的基本用法,从而能达到简单的线程同步.互斥量是一种特殊的变量,它有两种状态:锁定以及解锁.如果互斥量是锁定的,就有一个特定的线程持有或者 ...

随机推荐

  1. 为什么spark中只有ALS

    WRMF is like the classic rock of implicit matrix factorization. It may not be the trendiest, but it ...

  2. 【Offer】[48] 【最长不含重复字符的子字符串】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度.假设字符串中只包含'a'~'z'的字符.例如,在字符串&q ...

  3. Python编译器及Sublime Text3安装及开发环境配置

    1.初学Python,你需要一个好的开发编辑器 在选择Python编辑器时,可能纠结于那个Python的版本更好一些,在Python2.x和Python3.x版本中, Python3.x版本更好一些, ...

  4. 持续集成高级篇之Jenkins Pipeline 集成sonarqube

    系列目录 前面章节中我们讲到了Sonarqube的使用,其实Sonarqube获取msbuild结果主要是执行三个命令,开始标记,执行msbuild,结束标记,这些都是命令,是非常容易集成到我们ci流 ...

  5. 新书推荐《再也不踩坑的Kubernetes实战指南》

      <再也不踩坑的Kubernetes实战指南>终于出版啦.目前可以在京东.天猫购买,京东自营和当当网预计一个星期左右上架. 本书贴合生产环境经验,解决在初次使用或者是构建集群中的痛点,帮 ...

  6. C# 表达式树遍历(二)

    一.前言 上一篇我们对表达式树有了初步的认识,这里我们将对表达式树进行遍历,只有弄清楚了他的运行原理,我们才可以对他进行定制化修改. 表达式系列目录 C# 表达式树讲解(一) C# 表达式树遍历(二) ...

  7. SpringCloud(三)Ribbon与Feign

    上一篇使用了Eureka与Ribbon组件做了最简单的的服务注册与发现,我们知道Eureka是实现服务治理中心的组件,但是上一篇Eureka没有实现集群,这样没有保证到Eureka Server的高可 ...

  8. Net基础篇_学习笔记_第十一天_面向对象(练习)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. 基于DevExpress的SpreadsheetControl实现对Excel的打开、预览、保存、另存为、打印(附源码下载)

    场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...

  10. 9.1练习题5 差k素数对 题解

    题目出处:洛谷 P1348 ,题面略有改编. 题目描述 给你两个数 n 和 k ,请求出所有小于等于 n 的相差为 k 的素数对. 输入格式 两个正整数n,k.1<=k<=n<=10 ...