1.数据预处理 二值化

import numpy as np
from sklearn import preprocessing X = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]])
binarized = preprocessing.Binarizer().fit(X)
print(binarized.transform(X))

2.数据预处理 Onehot处理离散数据

import numpy as np
from sklearn import preprocessing Y = np.array([[0, 1, 0], [1, 0, 1], [2, 2, 1], [3, 1, 0]])
enc = preprocessing.OneHotEncoder()
enc.fit(Y)
print(enc.transform([[3, 0, 1]]).toarray())

3.综合处理文本离散数据 Onehot处理离散文本数据

import numpy as np
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder # 原始离散数据,其中国家有四种数据,职业有三种数据,性别有两种数据,即[2,3,4]
Y_label = np.array([['from China', 'Student', 'Male'], ['from USA', 'Teacher', 'Female'],
['from UK', 'Engineer', 'Female'],['from AU', 'Student', 'Male']]) # 将离散文本转换为数字表示
le_from = LabelEncoder()
le_job = LabelEncoder()
le_gender = LabelEncoder()
le_from.fit(np.array(['from China', 'from USA', 'from UK', 'from AU']))
le_job.fit(np.array(['Student', 'Teacher', 'Engineer']))
le_gender.fit(np.array(['Male','Female'])) # 替换原数据
Y_label[:, 0] = le_from.transform(Y_label[:, 0])
Y_label[:, 1] = le_job.transform(Y_label[:, 1])
Y_label[:, 2] = le_gender.transform(Y_label[:, 2]) # 使用OneHot编码数据
enc = preprocessing.OneHotEncoder()
enc.fit(Y_label)
print(enc.transform([[3, 0, 1]]).toarray())

scikit-learn杂记的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  7. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

  8. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  9. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  10. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

随机推荐

  1. SQL中的JOIN语法详解

    参考以下两篇博客: 第一个是 sql语法:inner join on, left join on, right join on详细使用方法 讲了 inner join, left join, righ ...

  2. linux的各个子系统

    Linux基本的子系统主要有CPU.Memory.IO.Network. 在这些子系统中,它们之间相互之间高度依赖.不论什么一个子系统的高负载都会引起其它子系统出现故障. 比如: 大量的页调入请求对内 ...

  3. WPF Clip实现百叶窗

    原文:WPF Clip实现百叶窗 效果图; 后台代码: public MainWindow()         {             InitializeComponent();         ...

  4. Matlab Tricks(二十一)—— 软阈值函数的实现

    dj,k^=⎧⎩⎨⎪⎪dj,k−λ,dj,k≥λ0,otherwisedj,k+λ,dj,k≤−λ function y = soft(x, T) y = (x - abs(T) > 0) .* ...

  5. 【LeetCode】LRU Cache 解决报告

    插话:只写了几个连续的博客,博客排名不再是实际"远在千里之外"该.我们已经进入2一万内. 再接再厉.油! Design and implement a data structure ...

  6. Xamarin 弹窗

    包括通知类弹窗和选择类弹窗,以下是安卓手机的显示效果 关键代码 DisplayAlert("Alert", "You have been alerted", & ...

  7. js 动态生成button 并设置click事件

    <div id="MyDiv"></div> <script> function AddButton() { var MyDiv =docume ...

  8. redis zincrby zadd 遇到的问题

    在维护代理池时 报错1: zincrby(REDIS_KEY,proxy,-1)redis.exceptions.ResponseError: value is not a valid float 查 ...

  9. 微信小程序把玩(十七)input组件

    原文:微信小程序把玩(十七)input组件 input输入框使用的频率也是比较高的...样式的话自己外面包裹个view自己定义.input属性也不是很多,有需要自己慢慢测,尝试 主要属性: wxml ...

  10. duilib菜单开发遇见“0xC0000005: 读取位置 0xFFFFFFFFFFFFFFFF 时发生访问冲突”

    我的程序是这样一个逻辑. 首先创建用户列表,点击列表项弹出菜单,点击菜单上“设备选项”,弹出设备列表,上面显示这个用户拥有的设备. 菜单的创建参考了这为博主的教程:http://www.cnblogs ...