数字三角形(POJ1163)

    

    在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99

输入格式:

5      //表示三角形的行数    接下来输入三角形

7

3   8

8   1   0

2   7   4   4

4   5   2   6   5

对于空间优化后的具体递推过程如下:

接下里的步骤就按上图的过程一步一步推导就可以了。进一步考虑,我们甚至可以连maxSum数组都可以不要,直接用D的第n行直接替代maxSum即可。但是这里需要强调的是:虽然节省空间,但是时间复杂度还是不变的。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 10010
int main()
{
int a[maxn][maxn],dp[maxn],n;
while(~scanf("%d",&n))
{
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
scanf("%d",&a[i][j]);
}
dp[n] = ;
for(int i=n;i>=;i--)
{
for(int j=;j<=i;j++)
{
dp[j] = max(dp[j],dp[j+]) + a[i][j];//第一次的时候,dp[1],dp[2]...dp[n]都为0
}
}
printf("%d\n",dp[]);
}
return ;
}

接下来,我们就进行一下总结:

    递归到动规的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。

    动规解题的一般思路

    1. 将原问题分解为子问题

  • 把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
  • 子问题的解一旦求出就会被保存,所以每个子问题只需求 解一次。

    2.确定状态

  • 在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
  • 所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。

整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

    3.确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

    4. 确定状态转移方程

定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

数字三角形的状态转移方程:

    能用动规解决的问题的特点

1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。

2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

 参考博客
http://blog.csdn.net/baidu_28312631/article/details/47418773

dp递推 数字三角形,dp初学者概念总结的更多相关文章

  1. hdu2089(数位DP 递推形式)

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  2. C. The Fair Nut and String 递推分段形dp

    C. The Fair Nut and String 递推分段形dp 题意 给出一个字符串选择一个序列\({p_1,p_2...p_k}\)使得 对于任意一个\(p_i\) , \(s[p_i]==a ...

  3. 递推、数位DP解析(以HDU 2089 和 HDU 3555 为例)

    HDU 2089 不要62 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2089 Problem Description 杭州人称那些傻乎乎粘嗒嗒的人 ...

  4. HDU5965 扫雷 —— dp递推

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5965 题解: 1. 用a[]数组记录第二行的数字,用dp[]记录没一列放的地雷数.如果第一列的地雷数d ...

  5. hdu 2604 Queuing(dp递推)

    昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...

  6. Power oj2498/DP/递推

    power oj 2498 /递推 2498: 新年礼物 Time Limit: 1000 MS Memory Limit: 65536 KBTotal Submit: 12 Accepted: 3  ...

  7. BZOJ4321queue2——DP/递推

    题目描述 n 个沙茶,被编号 1~n.排完队之后,每个沙茶希望,自己的相邻的两 人只要无一个人的编号和自己的编号相差为 1(+1 或-1)就行:  现在想知道,存在多少方案满足沙茶们如此不苛刻的条件. ...

  8. Shell Necklace (dp递推改cdq分治 + fft)

    首先读出题意,然后发现这是一道DP,我们可以获得递推式为 然后就知道,不行啊,时间复杂度为O(n2),然后又可以根据递推式看出这里面可以拆解成多项式乘法,但是即使用了fft,我们还需要做n次多项式乘法 ...

  9. hdu 1723 DP/递推

    题意:有一队人(人数 ≥ 1),开头一个人要将消息传到末尾一个人那里,规定每次最多可以向后传n个人,问共有多少种传达方式. 这道题我刚拿到手没有想过 DP ,我觉得这样传消息其实很像 Fibonacc ...

随机推荐

  1. Struts完成用户新增操作

    点击新增客户出现该页面并完成前后台交互 代码逻辑分析: jsp 页面部分代码 <TABLE id=table_1 style="DISPLAY: none" cellSpac ...

  2. RocketMQ中Broker的消息存储源码分析

    Broker和前面分析过的NameServer类似,需要在Pipeline责任链上通过NettyServerHandler来处理消息 [RocketMQ中NameServer的启动源码分析] 实际上就 ...

  3. kafka消息的处理机制(五)

    这一篇我们不在是探讨kafka的使用,前面几篇基本讲解了工作中的使用方式,基本api的使用还需要更深入的去钻研,多使用才会有提高.今天主要是探讨一下kafka的消息复制以及消息处理机制. 1. bro ...

  4. kafka客户端和服务端开发(三)

    前面我们已经搭建了kafka的单机和集群环境,分别写了简单的实例代码,对于代码里面使用到的参数并没有做解释.下面我们来详细说一下各个参数的作用. 1. 创建kafka生产者 kafka生产者有3个必选 ...

  5. 利用hash或history实现单页面路由

    目录 html代码 css代码 JavaScript代码 hash方式 history 方式 浏览器端代码 服务器端 在chrome(版本 70.0.3538.110)测试正常 编写涉及:css, h ...

  6. android ——后台下载

    这次的这个demo想要实现一个后台下载文件的功能,下载的时候会有一个告知进度的通知, 使用的依赖库就一个: compile 'com.squareup.okhttp3:okhttp:3.9.0' 大体 ...

  7. -bash: redis: command not found

    在linux中安装redis,先是拉过去安装,然后通过命令:make   进行编译  编译完成以后通过命令 make install 完成安装:结果在进行启动linux的时候执行           ...

  8. git submodule 子模块

    ### 背景:为什么要用子模块? 在开发项目中可能会遇到这种问题:在你的项目中使用另一个项目,也许这是一个第三方开发的库,或者是你独立开发的并在多个父项目中使用的.简单来说就是A同学开发了一个模块,被 ...

  9. 神盘GCCX,2019必撸大毛!

    自从今年5月转型投资以来,已经很少薅羊毛了! 不是不撸,是因为一般的羊毛我真看不上! 撸羊毛能不能发财,能不能日入几百几千! 答案是,可以! 干羊毛,像趣步,云钱包,云比特,环保币,很多人都发财了!前 ...

  10. 关于sparksql中设置自定义自增列的相关要点(工作共踩过的坑-1)

    小白终于进入了职场,从事大数据方面的工作! 分到项目组了,搬砖的时候遇到了一个这样的问题. 要求:用spark实现oracle的存储过程中计算部分. 坑:由于报表中包含了一个ID字段,其要求是不同的区 ...