Joyful HDU - 5245 概率问题
However, Sakura is a very naughty girl, so she just randomly uses the tool for KKtimes. More specifically, each time for Sakura to use that tool, she just randomly picks two squares from all the M×NM×N squares, with equal probability. Now, kAc wants to know the expected number of squares that will be painted eventually.
InputThe first line contains an integer TT(T≤100T≤100), denoting the number of test cases.
For each test case, there is only one line, with three integers M,NM,N and KK.
It is guaranteed that 1≤M,N≤5001≤M,N≤500, 1≤K≤201≤K≤20.
OutputFor each test case, output ''Case #t:'' to represent the tt-th case, and then output the expected number of squares that will be painted. Round to integers.Sample Input
2
3 3 1
4 4 2
Sample Output
Case #1: 4
Case #2: 8
Hint
The precise answer in the first test case is about 3.56790123.
题意:
给出一个M*N的矩阵,从其中任意的选两个格子,将以两个格子为对角的矩形染色。这样的操作重复k次,问会被涂色的格子数的期望值。
分析:
期望值说白了就是执行完上述操作后,计算最有可能涂了多少个格子。
看了网上的题解才明白,我们只需要计算每一个格子可能被选中的概率,
期望值E(x)=x1*p1 + x2*p2 + ..... + xn*pn;
在这里我们把每1个格子看做独立事件,所以这里的x1=x2=.....=xn=1,
所以对于本题,期望值 E(x)=p1 + p2 + ..... + pn;
解题:
现在问题就简化成了求 每一个格子 被选中的概率,再累加即可。
先看一张图:
假设现在我们求5这个点被涂色的概率,怎样可以让他染上色呢?
选点(x1,y1)和 (x2,y2)构成的矩形包含5这个点即可。
在矩阵中选两个点的总情况数 是 m*n * m*n
那么选点有9种情况:
1、若(x1,y1)在区域1,则(x2,y2)可以在区域5、6、8、9
2、若(x1,y1)在区域3,则(x2,y2)可以在区域4、5、7、8
3、若(x1,y1)在区域7,则(x2,y2)可以在区域2、3、5、6
4、若(x1,y1)在区域9,则(x2,y2)可以在区域1、2、4、5
5、若(x1,y1)在区域2,则(x2,y2)可以在区域4、5、6、7、8、9
6、若(x1,y1)在区域4,则(x2,y2)可以在区域2、3、5、6、8、9
7、若(x1,y1)在区域6,则(x2,y2)可以在区域1、2、4、5、7、8
8、若(x1,y1)在区域8,则(x2,y2)可以在区域1、2、3、4、5、6
9、若(x1,y1)在区域5,则(x2,y2)可以在任意区域
当前这个点被染色的概率就是这9种情况之概率和。
---------------------
参考博客:https://blog.csdn.net/winter2121/article/details/71082686
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e3+10;
const ll mod = 1e9+7;
const double pi = acos(-1.0);
const double eps = 1e-8;
int main() {
ll T, k;
double n, m;
scanf("%lld",&T);
for( ll cas = 1; cas <= T; cas ++ ) {
scanf("%lf %lf %lld",&m,&n,&k);
double sum = n*m*n*m, ans = 0; //sum:所有的情况种数,ans:期望值
for( ll i = 1; i <= m; i ++ ) {
for( ll j = 1; j <= n; j ++ ) { //对每一个点算贡献值
double p = 0; //点(i,j)被选中的情况数
//另外一个点在区域1,3,5,7
p += (i-1)*(j-1)*(m-i+1)*(n-j+1);
p += (i-1)*(n-j)*(m-i+1)*j;
p += (m-i)*(j-1)*i*(n-j+1);
p += (m-i)*(n-j)*i*j;
//另外一个点在区域2,4,6,8
p += (i-1)*1*(m-i+1)*n;
p += 1*(j-1)*m*(n-j+1);
p += 1*(n-j)*m*j;
p += (m-i)*1*i*n;
//另外一个点在区域5
p += m*n;
//点(i,j)被选中的概率
p = (p*1.0)/sum;
ans += 1-pow(1-p,k);
}
}
printf("Case #%lld: %.0f\n",cas,ans);
}
return 0;
}
Joyful HDU - 5245 概率问题的更多相关文章
- J - Joyful HDU - 5245 (概率)
题目链接: J - Joyful HDU - 5245 题目大意:给你一个n*m的矩阵,然后你有k次涂色机会,然后每一次可以选定当前矩阵的一个子矩阵染色,问你这k次用完之后颜色个数的期望. 具体思路 ...
- HDU - 5245 概率
JoyfulHDU - 5245 题目大意:有N*M个正方形,进行k次涂色,每次会随机的选两个正方形作为一个矩形区域的顶点,然后把这个区域内的涂色,最后问k次之后,预计被涂了色的正方形有几个(也就是数 ...
- HDU 5985 概率
n种硬币各有cnt[i]枚,每轮下其有p[i]概率保留,问各种硬币只有它存活到最后一轮的概率. 设k轮后i硬币存活概率$a[i][k]=(1-p^k_i)^{cnt[i]}$ 则最后只有第i种硬币存活 ...
- HDU 5245 Joyful(概率题求期望)
D - Joyful Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit S ...
- HDU 5245 Joyful(期望)
http://acm.hdu.edu.cn/showproblem.php?pid=5245 题意: 给出一个n*m的矩阵格子,现在有k次操作,每次操作随机选择两个格子作为矩形的对角,然后将这范围内的 ...
- hdu 5245 Joyful(期望的计算,好题)
Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...
- HDU 5245 Joyful (期望)
题意:进行K次染色,每次染色会随机选取一个以(x1,y1),(x2,y2)为一组对角的子矩阵进行染色,求K次染色后染色面积的期望值(四舍五入). 析:我们可以先求出每个格子的期望,然后再加起来即可.我 ...
- HDU 5245 上海大都会 J题 (概率期望)
这道题的概率可以单独考虑每个格子对期望的贡献值.因为其实每个格子是否被选都可以认为是独立的,单独一个格子贡献的期望为1*(该格子K次被选的概率),所以答案其实就是每个格子K次被选中的概率之和. #in ...
- hdu 1203 概率+01背包
I NEED A OFFER! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
随机推荐
- 从深处去掌握数据校验@Valid的作用(级联校验)
每篇一句 NBA里有两大笑话:一是科比没天赋,二是詹姆斯没技术 相关阅读 [小家Java]深入了解数据校验:Java Bean Validation 2.0(JSR303.JSR349.JSR380) ...
- Eclipse Other Projects小问题
Eclipse 不知什么时候多了个 "Other Projects" 文件夹,所有的项目又多了一层目录,如图所示: 虽然对功能没任何影响,但每次打开有些麻烦,多少感觉有些不爽…… ...
- 夯实Java基础(十一)——内部类
1.内部类的概念 内部类顾名思义:将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类.对于很多Java初学者来说,内部类学起来真的是一头雾水,根本理解不清楚是个什么东西,包括我自己(我太菜 ...
- ImageView 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- 12、面向对象的思想(OOP)
面向对象与面向过程 1.都是解决问题的思维方式,都是代码的组织的方式: 2.解决简单的问题可以使用面向过程: 3.解决复杂的问题建议使用面向对象,微观处理依旧会使用面向过程. 对象的进化史(数据管理的 ...
- 3、数组的声明及初始化(test1.java)
今天学习了,一位数组和二维数组,先学习了数组的申请,数组的初始化,数组的拷贝等.对于数组我认为,和C\C++中的数组,没有什么太大的区别,但是在JAVA中,大家都知道JAVA是面向对象的编程语言,每一 ...
- Java中的魔法类-Unsafe
Unsafe是位于sun.misc包下的一个类,主要提供一些用于执行低级别.不安全操作的方法,如直接访问系统内存资源.自主管理内存资源等,这些方法在提升Java运行效率.增强Java语言底层资源操作能 ...
- cs231n官方note笔记
本文记录官方note中比较新颖和有价值的观点(从反向传播开始) 一 反向传播 1 “反向传播是一个优美的局部过程.在整个计算线路图中,每个门单元都会得到一些输入并立即计算两个东西:1. 这个门的输出值 ...
- java io读取性能对比
背景 从最早bio的只支持阻塞的bio(同步阻塞) 到默认阻塞支持非阻塞nio(同步非阻塞+同步阻塞)(此时加入mmap类) 再到aio(异步非阻塞) 虽然这些api改变了调用模式,但真正执行效率上是 ...
- spring-boot-plus 常见问题解决 FAQ(十二)
spring-boot-plus 常见问题解决 FAQ 编译错误问题 log日志编译错误 编译提示log.info等日志错误 解决 检查是否安装lombok插件 idea安装lombok eclips ...