不相交路径[BZOJ1471] 容斥原理 拓扑排序
最近学容斥的时候又碰到一道类似的题目,所以想分享一个套路,拿这题来举例
【题目描述】
给出一个\(N(N\leq 150)\)个结点的有向无环简单图。给出4个不同的点\(a,b,c,d\),定义不相交路径为两条路径,两条路径的起点分别为\(a\)和\(c\),对应的两条路径的终点为\(b\)和\(d\),要求满足这两条路径不相交,即两条路径上没有公共的点。 现在要求不相交路径的方案数。
【输入格式】
第一行为\(N,M\)。表示这个有向无环图有\(N\)个节点,\(M\)条边。 接下来\(M\)行,每行两个整数\(x,y\)。表示\(x\)至\(y\)有一条有向边。 接下来一行四个数\(a,b,c,d\),意义如题中所述。
【输出格式】
输出为一行,即答案(方案数)。
在写这题之前,先看另外一个问题:
一个\(N*M(N, M \le 100000)\)的矩阵,从\((0,0)\)出发,每次可以向上或者向右走一步,问有多少种方案到达点\((N,M)\)?
很显然,答案是\(C^N_{N*M}\)。
那如果规定有\(K\)个点是不能走的呢?\((k \le 1000)\)
如果直接递推的话肯定是会超时的 所以我们要使用一些数学方法
具体来说,合法方案数等于总方案数减去不合法方案数 废话
如果直接对于每个不合法点统计有多少路径经过它,然后用总数减去这些方案的话,很有可能会重复删减同一个方案,因为一种方案可能经过多个不合法点。
所以我们改变一下思路,设\(f[i]\)表示有多少路径第一个经过的不合法点为\(i\),最后用总方案数减去所有的\(f[i]\)。由于一条不合法路径无论如何都只会有一个【第一个经过的不合法点】,所以这种方法显然是正确的。
统计时,只需将所有不合法点先按照\(X,Y\)轴大小排好序,对于一个不合法点\(i\),\(f[i] = (从(0,0)到i点的方案数 - \sum f[j]) * 从i点到(N,M)\)的方案数,其中\(j\)是所有位于它左下方的点。
时间复杂度 \(O(k^2)\),这就是数学的力♂量
再看此题,类似的,我们可以设\(f[i]\)表示第一次相交在\(i\)点的情况数。
先用\(DP, Floyd\),等各种奇葩方法求出任意两点\(u, v\)从\(u\)到\(v\)的路径数。
然后按照拓扑序算出每个\(f[i]\),\(f[i] = (cnt[a][i] * cnt[b][i] - \sum f[j] * cnt[j][i]^2) * cnt[i][c] * cnt[i][d]\),\(j\)为每个拓扑序在\(i\)之前的点。
答案\(=\)总方案数 \(- \sum f[i]\)
【代码】
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
ll n, m, a, b, c, d, ans;
ll x[505][505], in[505], f[505][505], g[505];
ll que[5005], head = 1, tail;
void toposort() {
for (int i = 1; i <= n; i++) {
if (in[i] == 0) que[++tail] = i, in[i] = -1;
}
while (head <= tail) {
ll c = que[head];
head++;
for (int i = 1; i <= n; i++) {
if (x[c][i]) {
in[i]--;
if (in[i] == 0) que[++tail] = i, in[i] = -1;
}
}
}
}
int main() {
scanf("%lld %lld", &n, &m);
for (int i = 1; i <= m; i++) {
ll xx, yy;
scanf("%lld %lld", &xx, &yy);
x[xx][yy] = f[xx][yy] = 1;
in[yy]++;
}
scanf("%lld %lld %lld %lld", &a, &b, &c, &d);
toposort();
for (int i = 1; i <= n; i++) f[i][i] = 1;
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
ll u = que[i], v = que[j];
for (int k = 1; k <= n; k++) {
if (x[v][k]) {
f[u][k] += f[u][v];
}
}
}
}
ans = f[a][b] * f[c][d];
for (int i = 1; i <= n; i++) {
ll cur = que[i];
g[cur] = f[a][cur] * f[c][cur];
for (int j = i - 1; j >= 1; j--){
g[cur] -= g[que[j]] * f[que[j]][cur] * f[que[j]][cur];
}
ans -= g[cur] * f[cur][b] * f[cur][d];
}
printf("%lld\n", ans);
return 0;
}
不相交路径[BZOJ1471] 容斥原理 拓扑排序的更多相关文章
- 【BZOJ1471】不相交路径 题解(拓扑排序+动态规划+容斥原理)
题目描述 在有向无环图上给你两个起点和终点分别为$a,b,c,d$.问有几种路径方案使得能从$a$走到$b$的同时能从$c$走到$d$,且两个路径没有交点. $1\leq n\leq 200,1\le ...
- 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp
题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...
- [luogu3244 HNOI2015] 落忆枫音(容斥原理+拓扑排序)
传送门 Description 给你一张 n 个点 m 条边的DAG,1 号节点没有入边.再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 . Input ...
- ACM: HDU 1285 确定比赛名次 - 拓扑排序
HDU 1285 确定比赛名次 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u De ...
- Educational DP Contest G - Longest Path (dp,拓扑排序)
题意:给你一张DAG,求图中的最长路径. 题解:用拓扑排序一个点一个点的拿掉,然后dp记录步数即可. 代码: int n,m; int a,b; vector<int> v[N]; int ...
- [bzoj 1471] 不相交路径 (容斥原理)
题目描述 给出一个N(n<=150)N(n<=150)N(n<=150)个结点的有向无环简单图.给出444个不同的点aaa,bbb,ccc,ddd,定义不相交路径为两条路径,两条路径 ...
- POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39602 Accepted: 13 ...
- Wannafly挑战赛22 B 字符路径 ( 拓扑排序+dp )
链接:https://ac.nowcoder.com/acm/contest/160/B 来源:牛客网 题目描述 给一个含n个点m条边的有向无环图(允许重边,点用1到n的整数表示),每条边上有一个字符 ...
- [BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理
分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有 ...
随机推荐
- webpack4基础入门操作(一)
基于webpack4实践:开始:打开控制面板,制定到创建Webpack的文件夹. 并创建初始配置文件package.json 输入命令:npm init -y,在文件夹中出现一个package.jso ...
- @ApiImplicitParam注解
@Api:用在请求的类上,表示对类的说明 tags="说明该类的作用,可以在UI界面上看到的注解" value="该参数没什么意义,在UI界面上也看到,所以不需要配置&q ...
- NetCore AutoMapper的封装
需要引用AutoMapper的Nuget包 如果需要忽略某个字段就在字段上面打标签如下: [IgnoreMap] public string IgnoreValue { get; set; } ...
- 5. xadmin 后台搭建
要维护他人产权,就不喽了,直接飞机 Django1.11.11使用xadmin的方法(一: 快速安装篇):https://www.jianshu.com/p/bcb74595213e Django1. ...
- Java编程思想:内存映射文件
import java.io.*; import java.nio.IntBuffer; import java.nio.MappedByteBuffer; import java.nio.chann ...
- python的ORM技巧记录
# -*- coding:utf-8 -*- from sqlalchemy import create_engine, Column, Integer, String, ForeignKey, In ...
- 使用flink Table &Sql api来构建批量和流式应用(3)Flink Sql 使用
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Stream ...
- Lucene05-分词器
Lucene05-分词器 1.概念 Analyzer(分词器)的作用是把一段文本中的词按规则取出所包含的所有词.对应的是Analyzer类,这是一个抽象类,切分词的具体规则是由子类实现的,所以对于不同 ...
- Hive的架构原理&Hive的安装步骤
Hive架构图 元数据默认数据库是:Derby.开发使用MySQL Hive如何将SQL语句翻译成MapReduce的? 1.使用SQL解析器解析SQL语句 2.使用编译器进行编译逻辑 3.使用优化器 ...
- python的发展史
python的发展史 1989年,被称为龟叔的Guido在为ABC语言写插件时,产生了写一个简洁又实用的编程语言的想法,并开始着手编写.因为其喜欢Monty Python喜剧团,所以将其命名为pyth ...