[ch02-03] 梯度下降
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI,
点击star加星不要吝啬,星越多笔者越努力。
2.3 梯度下降
2.3.1 从自然现象中理解梯度下降
在大多数文章中,都以“一个人被困在山上,需要迅速下到谷底”来举例,这个人会“寻找当前所处位置最陡峭的地方向下走”。这个例子中忽略了安全因素,这个人不可能沿着最陡峭的方向走,要考虑坡度。
在自然界中,梯度下降的最好例子,就是泉水下山的过程:
- 水受重力影响,会在当前位置,沿着最陡峭的方向流动,有时会形成瀑布(梯度下降);
- 水流下山的路径不是唯一的,在同一个地点,有可能有多个位置具有同样的陡峭程度,而造成了分流(可以得到多个解);
- 遇到坑洼地区,有可能形成湖泊,而终止下山过程(不能得到全局最优解,而是局部最优解)。
2.3.2 梯度下降的数学理解
梯度下降的数学公式:
\[\theta_{n+1} = \theta_{n} - \eta \cdot \nabla J(\theta) \tag{1}\]
其中:
- \(\theta_{n+1}\):下一个值;
- \(\theta_n\):当前值;
- \(-\):减号,梯度的反向;
- \(\eta\):学习率或步长,控制每一步走的距离,不要太快以免错过了最佳景点,不要太慢以免时间太长;
- \(\nabla\):梯度,函数当前位置的最快上升点;
- \(J(\theta)\):函数。
梯度下降的三要素
- 当前点;
- 方向;
- 步长。
为什么说是“梯度下降”?
“梯度下降”包含了两层含义:
- 梯度:函数当前位置的最快上升点;
- 下降:与导数相反的方向,用数学语言描述就是那个减号。
亦即与上升相反的方向运动,就是下降。
图2-9 梯度下降的步骤
图2-9解释了在函数极值点的两侧做梯度下降的计算过程,梯度下降的目的就是使得x值向极值点逼近。
2.3.3 单变量函数的梯度下降
假设一个单变量函数:
\[J(x) = x ^2\]
我们的目的是找到该函数的最小值,于是计算其微分:
\[J'(x) = 2x\]
假设初始位置为:
\[x_0=1.2\]
假设学习率:
\[\eta = 0.3\]
根据公式(1),迭代公式:
\[x_{n+1} = x_{n} - \eta \cdot \nabla J(x)= x_{n} - \eta \cdot 2x\tag{1}\]
假设终止条件为J(x)<1e-2,迭代过程是:
x=0.480000, y=0.230400
x=0.192000, y=0.036864
x=0.076800, y=0.005898
x=0.030720, y=0.000944
上面的过程如图2-10所示。
图2-10 使用梯度下降法迭代的过程
2.3.4 双变量的梯度下降
假设一个双变量函数:
\[J(x,y) = x^2 + \sin^2(y)\]
我们的目的是找到该函数的最小值,于是计算其微分:
\[{\partial{J(x,y)} \over \partial{x}} = 2x\]
\[{\partial{J(x,y)} \over \partial{y}} = 2 \sin y \cos y\]
假设初始位置为:
\[(x_0,y_0)=(3,1)\]
假设学习率:
\[\eta = 0.1\]
根据公式(1),迭代过程是的计算公式:
\[(x_{n+1},y_{n+1}) = (x_n,y_n) - \eta \cdot \nabla J(x,y)\]
\[ = (x_n,y_n) - \eta \cdot (2x,2 \cdot \sin y \cdot \cos y) \tag{1}\]
根据公式(1),假设终止条件为\(J(x,y)<1e-2\),迭代过程如表2-3所示。
表2-3 双变量梯度下降的迭代过程
迭代次数 | x | y | J(x,y) |
---|---|---|---|
1 | 3 | 1 | 9.708073 |
2 | 2.4 | 0.909070 | 6.382415 |
... | ... | ... | ... |
15 | 0.105553 | 0.063481 | 0.015166 |
16 | 0.084442 | 0.050819 | 0.009711 |
迭代16次后,J(x,y)的值为0.009711,满足小于1e-2的条件,停止迭代。
上面的过程如表2-4所示,由于是双变量,所以需要用三维图来解释。请注意看两张图中间那条隐隐的黑色线,表示梯度下降的过程,从红色的高地一直沿着坡度向下走,直到蓝色的洼地。
表2-4 在三维空间内的梯度下降过程
观察角度1 | 观察角度2 |
---|---|
![]() |
![]() |
2.3.5 学习率η的选择
在公式表达时,学习率被表示为\(\eta\)。在代码里,我们把学习率定义为learning_rate,或者eta。针对上面的例子,试验不同的学习率对迭代情况的影响,如表2-5所示。
表2-5 不同学习率对迭代情况的影响
学习率 | 迭代路线图 | 说明 |
---|---|---|
1.0 | ![]() |
学习率太大,迭代的情况很糟糕,在一条水平线上跳来跳去,永远也不能下降。 |
0.8 | ![]() |
学习率大,会有这种左右跳跃的情况发生,这不利于神经网络的训练。 |
0.4 | ![]() |
学习率合适,损失值会从单侧下降,4步以后基本接近了理想值。 |
0.1 | ![]() |
学习率较小,损失值会从单侧下降,但下降速度非常慢,10步了还没有到达理想状态。 |
代码位置
ch02, Level3, Level4, Level5
[ch02-03] 梯度下降的更多相关文章
- batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)
批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...
- 大叔学ML第一:梯度下降
目录 原理 实践一:求\(y = x^2 - 4x + 1\)的最小值 实践二:求\(z = x^2 + y^2 + 5\)的最小值 问答时间 原理 梯度下降是一个很常见的通过迭代求解函数极值的方法, ...
- logistics回归简单应用——梯度下降,梯度上升,牛顿算法(一)
警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题. 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassroom.s ...
- ML(附录1)——梯度下降
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以).在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的 ...
- 机器学习算法整理(二)梯度下降求解逻辑回归 python实现
逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...
- 对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 使用多个梯度下降的方式进行测试,同时使用ops.apply_gradient进行梯度的下降
1. ops = tf.train.GradientDescentOptimizer(learning_rate) 构建优化器 参数说明:learning_rate 表示输入的学习率 2.ops.co ...
- 多变量线性回归时使用梯度下降(Gradient Descent)求最小值的注意事项
梯度下降是回归问题中求cost function最小值的有效方法,对大数据量的训练集而言,其效果要 好于非迭代的normal equation方法. 在将其用于多变量回归时,有两个问题要注意,否则会导 ...
随机推荐
- Centos中查找文件、目录、内容
1.查找文件 find / -name 'filename' 2.查找文件夹(目录) find / -name 'path' -type d 3.查找内容 find . | xargs grep -r ...
- 解决tortoiseSvn 访问版本库的时候一直初始化,或者无响应的问题
现象 svn访问版本库时一直提示: please wait while the repository browser is initializing 没有反应,甚至3-4分钟才会出来,即便出来也会很卡 ...
- Apache2的安装
Apache2的安装 1.执行:sudo apt-get install apache2. 2.sudo vim /etc/apache2/apache2.conf在最后加上:ServerName l ...
- 数据结构(四十六)插入排序(1.直接插入排序(O(n²)) 2.希尔排序(O(n3/2)))
一.插入排序的基本思想 从初始有序的子集合开始,不断地把新的数据元素插入到已排列有序子集合的合适位置上,使子集合中数据元素的个数不断增多,当子集合等于集合时,插入排序算法结束.常用的 插入排序算法有直 ...
- 一起来刷《剑指Offer》——不修改数组找出重复的数字(思路及Python实现)
数组中重复的数字 在上一篇博客中<剑指Offer>-- 题目一:找出数组中重复的数字(Python多种方法实现)中,其实能发现这类题目的关键就是一边遍历数组一边查满足条件的元素. 然后我们 ...
- Unity3D图像后处理特效——Depth of Field 3.4
Depth of Field 3.4 is a common postprocessing effect that simulates the properties of a camera lens. ...
- Vue中Form表单验证无法消除验证问题
iView的表单api给出了一个resetFields方法,用于重置整个表单输入的内容并清除验证提示. 但是有时候需要只消除部分的iview的resetFields方法源码是这样的resetField ...
- Flask:数据库的操作
1.对数据库的增加操作 在Django中,数据库查询需要借助objects方法,在Flask中也有类似的操作.在执行对数据库的增加操作之前,我们首先需要实例化一个session对象,这里的sessio ...
- CentOS生产环境无网络安装percona-xtrabackup2.4【RPM安装教程】
Percona XtraBackup 8.0不支持对在MySQL 8.0之前的版本,Percona Server for MySQL或 Percona XtraDB Cluster中创建的数据库进行备 ...
- 图片瀑布流,so easy!
什么是图片瀑布流 用一张花瓣网页的图片布局可以很清楚看出图片瀑布流的样子: 简单来说,就是有很多图片平铺在页面上,每张图片的宽度相同,但是高度不同,这样错落有致的排列出 n 列的样子很像瀑布,于是就有 ...