%%%dkw

话说这是个论文题来着...

考虑生成函数\(OGF\)

对于价值为\(v\)的物品,由于有\(10^5\)的件数,可以看做无限个

那么,其生成函数为\(x^0 + x^{v} + x^{2v} + ... = \frac{1}{1 - x^v}\)

我们所需的答案即\([x^n] \prod \frac{1}{1 - x^{v_i}}\)

只需考虑求出\(A = \prod \frac{1}{1 - x^{v_i}}\)

自然地想到取对数

\(In(A) = \sum In(\frac{1}{1 - x^{v_i}})\)


不难发现

\(In(\frac{1}{1 - x^v}) = - In(1 - x^v)\)

考虑用麦克劳林级数来模拟,那么

由于\(In^{(n)}(1 - x) = - \frac{1}{(1 - x)^n} * (n - 1)!\)

\(-In(1 - x^v) = \sum \frac{x^{vi}}{i}\)

于是,我们可以直接枚举倍数,在\(O(m \log m)\)的时间内完成计算

最后只要\(O(m \log m)\)的\(exp\)一下即可


#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} const int sid = 500050;
const int mod = 998244353; int n, m;
int V[sid], F[sid], inv[sid], rev[sid], ans[sid]; inline int Inc(int a, int b) { return (a + b >= mod) ? a + b - mod : a + b; }
inline int Dec(int a, int b) { return (a - b < 0) ? a - b + mod : a - b; }
inline int mul(int a, int b) { return 1ll * a * b % mod; }
inline int fp(int a, int k) {
int ret = 1;
for( ; k; k >>= 1, a = mul(a, a))
if(k & 1) ret = mul(ret, a);
return ret;
} inline void init(int Maxn, int &n, int &lg) {
n = 1; lg = 0;
while(n < Maxn) n <<= 1, lg ++;
} inline void NTT(int *a, int n, int opt) {
for(ri i = 0; i < n; i ++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(ri i = 1; i < n; i <<= 1)
for(ri j = 0, g = fp(3, (mod - 1) / (i << 1)); j < n; j += (i << 1))
for(ri k = j, G = 1; k < i + j; k ++, G = mul(G, g)) {
int x = a[k], y = mul(G, a[i + k]);
a[k] = (x + y >= mod) ? x + y - mod : x + y;
a[i + k] = (x - y < 0) ? x - y + mod : x - y;
}
if(opt == -1) {
int ivn = fp(n, mod - 2);
reverse(a + 1, a + n);
rep(i, 0, n) a[i] = mul(a[i], ivn);
}
} int ia[sid], ib[sid];
inline void Inv(int *a, int *b, int n) {
if(n == 1) { b[0] = fp(a[0], mod - 2); return; }
Inv(a, b, n >> 1); int N = 1, lg = 0; init(n + n, N, lg);
for(ri i = 0; i < N; i ++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1)); for(ri i = 0; i < N; i ++) ia[i] = ib[i] = 0;
for(ri i = 0; i < n; i ++) ia[i] = a[i], ib[i] = b[i]; NTT(ia, N, 1); NTT(ib, N, 1);
for(ri i = 0; i < N; i ++)
ia[i] = Dec((ib[i] << 1) % mod, mul(ia[i], mul(ib[i], ib[i])));
NTT(ia, N, -1); for(ri i = 0; i < n; i ++) b[i] = ia[i];
} inline void Inv_init(int n) {
inv[0] = inv[1] = 1;
rep(i, 2, n) inv[i] = mul(inv[mod % i], mod - mod / i);
} inline void wf(int *a, int *b, int n) { for(ri i = 1; i < n; i ++) b[i - 1] = mul(a[i], i); }
inline void jf(int *a, int *b, int n) { for(ri i = 1; i < n; i ++) b[i] = mul(a[i - 1], inv[i]); } int iv[sid], dx[sid];
inline void In(int *a, int *b, int n) {
for(ri i = 0; i < n + n; i ++) iv[i] = dx[i] = 0;
Inv(a, iv, n); wf(a, dx, n); int N = 1, lg = 0; init(n + n, N, lg);
for(ri i = 0; i < N; i ++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1)); NTT(iv, N, 1); NTT(dx, N, 1);
for(ri i = 0; i < N; i ++) iv[i] = mul(iv[i], dx[i]);
NTT(iv, N, -1); jf(iv, b, n);
} int inb[sid], fb[sid];
inline void Exp(int *a, int *b, int n) {
if(n == 1) { b[0] = 1; return; }
Exp(a, b, n >> 1); for(ri i = 0; i < n + n; i ++) inb[i] = fb[i] = 0;
In(b, inb, n); int N = 1, lg = 0; init(n + n, N, lg);
for(ri i = 0; i < N; i ++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1)); for(ri i = 0; i < n; i ++) fb[i] = Dec(a[i], inb[i]); fb[0] ++;
for(ri i = 0; i < n; i ++) inb[i] = b[i]; NTT(inb, N, 1); NTT(fb, N, 1);
for(ri i = 0; i < N; i ++) fb[i] = mul(fb[i], inb[i]);
NTT(fb, N, -1); for(ri i = 0; i < n; i ++) b[i] = fb[i], b[i + n] = 0;
} inline void calc() {
int N = 1, lg = 0;
init(m + 5, N, lg); Inv_init(N);
for(ri i = 1; i <= m; i ++)
for(ri j = i; j <= m; j += i)
F[j] = Inc(F[j], mul(V[i], inv[j / i]));
Exp(F, ans, N);
rep(i, 1, m) printf("%d\n", ans[i]);
} int main() {
n = read(); m = read();
rep(i, 1, n) V[read()] ++;
calc();
return 0;
}

luoguP4389 付公主的背包 多项式exp的更多相关文章

  1. [luogu4389]付公主的背包(多项式exp)

    完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是 ...

  2. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  3. 洛谷 4389 付公主的背包——多项式求ln、exp

    题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...

  4. luoguP4389 付公主的背包

    luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...

  5. [题解] LuoguP4389 付公主的背包

    这个题太神辣- 暴力背包就能获得\(30\)分的好成绩...... \(60\)分不知道咋搞..... 所以直接看\(100\)分吧\(QwQ\) 用一点生成函数的套路,对于一个体积为\(v\)的物品 ...

  6. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  7. Luogu4389 付公主的背包(生成函数+多项式exp)

    显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv).将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi).但这个多项式的项数是Σ ...

  8. 【Luogu4389】付公主的背包

    题目 传送门 解法 答案显然是\(n\)个形如\(\sum_{i \geq 1} x^{vi}\)的多项式的卷积 然而直接NTT的时间复杂度是\(O(nm\log n)\) 我们可以把每个多项式求\( ...

  9. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

随机推荐

  1. Java基础-SSM之Spring MVC入门篇

    Java基础-SSM之Spring MVC入门篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Spring MVC简介 1>.什么是Spring MVC 答:Sprin ...

  2. 鸟哥的Linux私房菜——第十五章:正规表示法

    视频链接 B站:http://www.bilibili.com/video/av10364761/ 目录如下 1. 前言:2. 基础正规表示法:2.1 以 grep 撷取字符串 (grep -iv   ...

  3. Kafka 0.8 副本同步机制理解

    Kafka的普及在很大程度上归功于它的设计和操作简单,如何自动调优Kafka副本的工作,挑战之一:如何避免follower进入和退出同步副本列表(即ISR).如果某些topic的部分partition ...

  4. npm install --save

    1. npm install:本地安装 2. npm install -g:全局安装 我们在使用 npm install 安装模块或插件时,有两种命令把它们写入到 package.json 文件中去, ...

  5. SQL语句(九)使用特殊关系运算符查询

    使用特殊关系运算符查询 特殊关系运算符 IN.NOT IN IS NULL.IS NOT NULL BETWEEN.NOT BETWEEN LIKE.NOT LIKE IN , NOT IN IN 在 ...

  6. SQL语句(十三)多表查询

    多表查询 1. 笛卡尔乘积 简单格式 SELECT * 或字段列表 FROM 数据表列表 实例 --1. 笛卡尔乘积 (五条件的连接--很多条件无意义) Select * from Student, ...

  7. 高并发数据库之MySql性能优化实战总结

    向MySQL发送一个请求时MySQL具体的操作过程 慢查询 1.慢查询 SHOW VARIABLES LIKE '%quer%' 索引优化技巧 1.对于创建的多列索引(复合)索引,只要查询条件使用了最 ...

  8. phpStorm 8.0.3 设置

    phpstorm 8 license key Learn Programming===== LICENSE BEGIN =====63758-1204201000000Ryqh0NCC73lpRm!X ...

  9. [R语言]读取文件夹下所有子文件夹中的excel文件,并根据分类合并。

    解决的问题:需要读取某个大文件夹下所有子文件夹中的excel文件,并汇总,汇总文件中需要包含的2部分的信息:1.该条数据来源于哪个子文件夹:2.该条数据来源于哪个excel文件.最终,按照子文件夹单独 ...

  10. 收集SpringBoot的一些学习资料

    1:wuyouzhuguli的博客  (24篇) https://github.com/wuyouzhuguli/Spring-Boot-Demos 2:方志鹏的博客  (27篇) https://b ...