把 Elasticsearch 当数据库使:聚合后排序
使用 https://github.com/taowen/es-monitor 可以用 SQL 进行 elasticsearch 的查询。有的时候分桶聚合之后会产生很多的桶,我们只对其中部分的桶关心。最简单的办法就是排序之后然后取前几位的结果。
ORDER BY _term
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200
SELECT ipo_year, COUNT(*) FROM symbol GROUP BY ipo_year ORDER BY ipo_year LIMIT 2
EOF
{"COUNT(*)": 4, "ipo_year": 1972}
{"COUNT(*)": 1, "ipo_year": 1973}
Elasticsearch
{
"aggs": {
"ipo_year": {
"terms": {
"field": "ipo_year",
"order": [
{
"_term": "asc"
}
],
"size": 2
},
"aggs": {}
}
},
"size": 0
}
因为 ipo_year 是 GROUP BY 的字段,所以按这个排序用_term指代。
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 3,
"aggregations": {
"ipo_year": {
"buckets": [
{
"key": 1972,
"doc_count": 4
},
{
"key": 1973,
"doc_count": 1
}
],
"sum_other_doc_count": 2893,
"doc_count_error_upper_bound": 0
}
},
"timed_out": false
}
ORDER BY _count
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200
SELECT ipo_year, COUNT(*) AS ipo_count FROM symbol GROUP BY ipo_year ORDER BY ipo_count LIMIT 2
EOF
{"ipo_count": 1, "ipo_year": 1973}
{"ipo_count": 2, "ipo_year": 1980}
Elasticsearch
{
"aggs": {
"ipo_year": {
"terms": {
"field": "ipo_year",
"order": [
{
"_count": "asc"
}
],
"size": 2
},
"aggs": {}
}
},
"size": 0
}
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 2,
"aggregations": {
"ipo_year": {
"buckets": [
{
"key": 1973,
"doc_count": 1
},
{
"key": 1980,
"doc_count": 2
}
],
"sum_other_doc_count": 2895,
"doc_count_error_upper_bound": -1
}
},
"timed_out": false
}
ORDER BY 指标
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200
SELECT ipo_year, MAX(market_cap) AS max_market_cap FROM symbol
GROUP BY ipo_year ORDER BY max_market_cap LIMIT 2
EOF
{"max_market_cap": 826830000.0, "ipo_year": 1982}
{"max_market_cap": 847180000.0, "ipo_year": 2016}
Elasticsearch
{
"aggs": {
"ipo_year": {
"terms": {
"field": "ipo_year",
"order": [
{
"max_market_cap": "asc"
}
],
"size": 2
},
"aggs": {
"max_market_cap": {
"max": {
"field": "market_cap"
}
}
}
}
},
"size": 0
}
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 20,
"aggregations": {
"ipo_year": {
"buckets": [
{
"max_market_cap": {
"value": 826830000.0
},
"key": 1982,
"doc_count": 4
},
{
"max_market_cap": {
"value": 847180000.0
},
"key": 2016,
"doc_count": 6
}
],
"sum_other_doc_count": 2888,
"doc_count_error_upper_bound": -1
}
},
"timed_out": false
}
HISTOGRAM 和 ORDER BY
除了 terms aggregation,其他 aggregation 也支持 order by 但是并不完善。比如 histogram aggregation 支持 sort 但是并不支持 size (也就是可以ORDER BY 但是不能 LIMIT)。官方有计划增加一个通用的支持 LIMIT 的方式,不过还没有实现:https://github.com/elastic/elasticsearch/issues/14928
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200
SELECT ipo_year_range, MAX(market_cap) AS max_market_cap FROM symbol
GROUP BY histogram(ipo_year, 10) AS ipo_year_range ORDER BY ipo_year_range
EOF
{"ipo_year_range": 1970, "max_market_cap": 18370000000.0}
{"ipo_year_range": 1980, "max_market_cap": 522690000000.0}
{"ipo_year_range": 1990, "max_market_cap": 230940000000.0}
{"ipo_year_range": 2000, "max_market_cap": 470490000000.0}
{"ipo_year_range": 2010, "max_market_cap": 287470000000.0}
Elasticsearch
{
"aggs": {
"ipo_year_range": {
"aggs": {
"max_market_cap": {
"max": {
"field": "market_cap"
}
}
},
"histogram": {
"field": "ipo_year",
"interval": 10,
"order": {
"_key": "asc"
}
}
}
},
"size": 0
}
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 2,
"aggregations": {
"ipo_year_range": {
"buckets": [
{
"max_market_cap": {
"value": 18370000000.0
},
"key": 1970,
"doc_count": 5
},
{
"max_market_cap": {
"value": 522690000000.0
},
"key": 1980,
"doc_count": 155
},
{
"max_market_cap": {
"value": 230940000000.0
},
"key": 1990,
"doc_count": 598
},
{
"max_market_cap": {
"value": 470490000000.0
},
"key": 2000,
"doc_count": 745
},
{
"max_market_cap": {
"value": 287470000000.0
},
"key": 2010,
"doc_count": 1395
}
]
}
},
"timed_out": false
}
把 Elasticsearch 当数据库使:聚合后排序的更多相关文章
- es聚合后排序
注意: es版本至少6.1以上 语句: GET 76/sessions/_search { "size": 0, "query": { "bool&q ...
- ElasticSearch 2 (34) - 信息聚合系列之多值排序
ElasticSearch 2 (34) - 信息聚合系列之多值排序 摘要 多值桶(terms.histogram 和 date_histogram)动态生成很多桶,Elasticsearch 是如何 ...
- ElasticSearch 2 (37) - 信息聚合系列之内存与延时
ElasticSearch 2 (37) - 信息聚合系列之内存与延时 摘要 控制内存使用与延时 版本 elasticsearch版本: elasticsearch-2.x 内容 Fielddata ...
- [SQL] SQL 基础知识梳理(三) - 聚合和排序
SQL 基础知识梳理(三) - 聚合和排序 [博主]反骨仔 [原文]http://www.cnblogs.com/liqingwen/p/5926689.html 序 这是<SQL 基础知识梳理 ...
- ElasticSearch 2 (35) - 信息聚合系列之近似聚合
ElasticSearch 2 (35) - 信息聚合系列之近似聚合 摘要 如果所有的数据都在一台机器上,那么生活会容易许多,CS201 课商教的经典算法就足够应付这些问题.但如果所有的数据都在一台机 ...
- ElasticSearch 2 (29) - 信息聚合系列之测试驱动
ElasticSearch 2 (29) - 信息聚合系列之测试驱动 摘要 我们可以用以下几页定义不同的聚合和它们的语法,但学习聚合的最佳途径就是用实例来说明.一旦我们获得了聚合的思想,以及如何合理地 ...
- Python全栈 MongoDB 数据库(聚合、二进制、GridFS、pymongo模块)
断网了2天 今天补上 聚合操作: 对文档的信息进行整理统计的操作 返回:统计后的文档集合 db.collection.aggregate() 功能:聚合函数,完成聚合操作 参数:聚合条件,配 ...
- 使用Multipath进行多链路聚合并对聚合后的设备固定命名
使用Multipath进行多链路聚合并对聚合后的设备固定命名 1.启用Multipath: (1)启动multipathd服务 #service multipathd start 或者 #/etc/i ...
- ElasticSearch 2 (33) - 信息聚合系列之聚合过滤
ElasticSearch 2 (33) - 信息聚合系列之聚合过滤 摘要 聚合范围限定还有一个自然的扩展就是过滤.因为聚合是在查询结果范围内操作的,任何可以适用于查询的过滤器也可以应用在聚合上. 版 ...
随机推荐
- i2c总线驱动,总线设备(适配器),从设备,从设备驱动的注册以及匹配
常用链接 我的随笔 我的评论 我的参与 最新评论 我的标签 随笔分类 ARM裸机(13) C(8) C++(8) GNU-ARM汇编 Linux驱动(24) Linux应用编程(5) Makefile ...
- highcharts x轴中文刻度太长换行
xAxis: { type: 'category', title:null, gridLineWidth: 1, lineColor: "#50ae93", labels: { s ...
- leaflet入门(五)API翻译(下)
L.PointConstructor(函数构造器)Properties(属性)Methods(方法) L.BoundsConstructor(函数构造器)Properties(属性)Methods(方 ...
- Java理论学时第二节。课后作业。
枚举不属于原始数据类型,它的每个具体值都引用一个特定的对象,相同的值则引用同一个对象. 可以使用“==”和equals()方法直接比对枚举变量的值,换句话说,对于枚举类型的变量,“==”和equals ...
- hdu 5088 高斯消元n堆石子取k堆石子使剩余异或值为0
http://acm.hdu.edu.cn/showproblem.php?pid=5088 求能否去掉几堆石子使得nim游戏胜利 我们可以把题目转化成求n堆石子中的k堆石子数异或为0的情况数.使用x ...
- Android-WebView与本地HTML (Java调用--->HTML的方法)
上一篇博客 Android-WebView与本地HTML (HTML调用-->Java的方法) 介绍了 JavaScript 调用--> Java中的方法,而此篇博客是介绍 Java 调用 ...
- 第7章 "敏捷+"项目管理
7.1 导入敏捷项目管理的步骤 1.导入敏捷的步骤 (1).培训 (2).教练与引导 (3).内化 2.敏捷混合型模式 7.2 项目启动与敏捷合同 1.敏捷项目启动 2.敏捷签约模式 在传统项目管 ...
- FFmpeg4.0笔记:rtsp2rtmp
Github https://github.com/gongluck/FFmpeg4.0-study.git #include <iostream> using namespace std ...
- DataTable 快速导入数据库——百万条数据只需几秒
public void InsertTable(DataTable dt, string TabelName, DataColumnCollection dtColum) { string str = ...
- C# 动态创建数据库三(MySQL)
前面有说明使用EF动态新建数据库与表,数据库使用的是SQL SERVER2008的,在使用MYSQL的时候还是有所不同 一.添加 EntityFramework.dll ,System.Data.En ...