【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
【题目】BZOJ 2111
【题意】求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果。\(n \leq 10^6,p \leq 10^9\),p是素数。
【算法】计数DP+排列组合+lucas
【题解】令i的父亲为i/2,转化为要求给一棵n个点的完全二叉树编号使得儿子编号>父亲编号。
设\(f[i]\)表示以第i个点为根的子树的编号方案数(1~sz[i]的排列),考虑从两个儿子处转移。
排列的本质是大小关系,所以两个排列组合起来相当于对1sz[i<<1]和1sz[i<<1|1]进行任意组合(各自保持顺序),然后从头到尾重编号成1~sz[i<<1]+sz[i<<1|1]。再将新的编号分配回去。
两个固定排列组合的方案数实际上是将sz[i<<1|1]个“1”分成sz[i<<1]+1份的方案数,采用隔板法易得C(sz[i<<1]+sz[i<<1|1],sz[i<<1]),再枚举两个排列,即:
\]
为了方便看,这里\(l_i=i<<1\),\(r_i=i<<1|1\)。
由于模数p可能比n小,会导致没有逆元,所以预处理1~min(n,p-1)的阶乘,然后用lucas求解组合数。
复杂度\(O(n)\)。
注意:n较大时线性预处理阶乘逆元保证复杂度,f数组全部初始化为1。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=2000010;//
int n,MOD,fac[maxn],fav[maxn],sz[maxn],f[maxn];
void gcd(int a,int b,int &x,int &y){if(!b){x=1;y=0;}else{gcd(b,a%b,y,x);y-=x*(a/b);}}
int inv(int a){int x,y;gcd(a,MOD,x,y);return (x%MOD+MOD)%MOD;}
int c(int n,int m){return 1ll*fac[n]*fav[m]%MOD*fav[n-m]%MOD;}
int lucas(int n,int m){
if(n<0||m<0||n<m)return 0;
if(n<MOD)return c(n,m);
return 1ll*c(n%MOD,m%MOD)*lucas(n/MOD,m/MOD)%MOD;
}
int main(){
scanf("%d%d",&n,&MOD);int mx=min(MOD-1,n);
fac[0]=1;for(int i=1;i<=mx;i++)fac[i]=1ll*fac[i-1]*i%MOD;
fav[mx]=inv(fac[mx]);for(int i=mx;i>=1;i--)fav[i-1]=1ll*fav[i]*i%MOD;///
for(int i=1;i<=(n<<1|1);i++)f[i]=1;
for(int i=n;i>=1;i--){
sz[i]=sz[i<<1]+sz[i<<1|1]+1;
f[i]=1ll*f[i<<1]*f[i<<1|1]%MOD*lucas(sz[i]-1,sz[i<<1])%MOD;//
}
printf("%d",f[1]);
return 0;
}
【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas的更多相关文章
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...
- bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...
- bzoj 2111: [ZJOI2010]Perm 排列计数【树形dp+lucas】
是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1} ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- bzoj 2111: [ZJOI2010]Perm 排列计数
神题... 扒自某神犇题解: http://blog.csdn.net/aarongzk/article/details/50655471 #include<bits/stdc++.h> ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- BZOJ.2111.[ZJOI2010]排列计数(DP Lucas)
题目链接 对于\(a_i>a_{i/2}\),我们能想到小根堆.题意就是,求构成大小为\(n\)的小根堆有多少种方案. 考虑DP,\(f[i]\)表示构成大小为\(i\)的小根堆的方案数,那么如 ...
随机推荐
- Fragment 使用总结
1. 要深刻理解Fragment 的生命周期 2. Fragment.getActivity()并不能保证非空. 3.如果在Fragment中有异步的回调, 特别要注意此时Fragment 是否还at ...
- PAT甲题题解-1014. Waiting in Line (30)-模拟,优先级队列
题意:n个窗口,每个窗口可以排m人.有k为顾客需要办理业务,给出了每个客户的办理业务时间.银行在8点开始服务,如果窗口都排满了,客户就得在黄线外等候.如果有一个窗口用户服务结束,黄线外的客户就进来一个 ...
- 从零开始学Kotlin-类和对象(5)
定义一个类 定义一个类,使用关键字class声明,后面跟类名(不使用new) class demo5 {//定义一个类,使用关键字class声明,后面跟类名 fun test() {//类中定义方法 ...
- PAT 甲级 1117 Eddington Number
https://pintia.cn/problem-sets/994805342720868352/problems/994805354762715136 British astronomer Edd ...
- 操作系统学习(一)、80x86保护模式内存管理
整理的不好,凑合着看吧 目录 1.内存及寻址 2.地址变换 3.分段机制 4.分页机制 5.保护 6.去到底部 一.内存及寻址 返回目录 二.地址变换 80X86 从 逻辑地址 到 物理地址 的转换: ...
- CentOS下面磁盘扩容处理
1. 给虚拟机增加一块硬盘: 过程不表 2. 增加了硬盘之后需要重启一下 查看磁盘 ls /dev/sd* 3. 使用 gdisk 处理磁盘 注意 这里面fdisk 貌似没法处理成 LVM 必须使用 ...
- 自定义SAP用户密码规则
一般实施SAP的公司因为安全性问题都会启用一定规则的用户密码强度,普遍的做法是让Basis在RZ10里面给系统参数做赋值,然后重启服务来实现对所有用户的密码规则的定义.但这样的话对所有用户有效,没办法 ...
- 使用AutoMapper实现Dto和Model的自由转换(中)
在上一篇文章中我们构造出了完整的应用场景,包括我们的Model.Dto以及它们之间的转换规则.下面就可以卷起袖子,开始我们的AutoMapper之旅了. [二]以Convention方式实现零配置的对 ...
- 常用的sublime text 3插件(很爽哦)
个人比较懒,平时喜欢用webstorm,但是因为webstorm打开实在太慢了,并且太看设备,所以本人编辑简单的文件依然会选择使用sublime,虽然网上有很多关于此类插件的分享了,但是感觉都是片段, ...
- 【bzoj2961】 共点圆
http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接) 题意 按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内. Solu ...