题目链接:https://cn.vjudge.net/contest/280041#problem/B

题目大意:给你n个数,然后让你找满足a[i] + a[j] = a[k] 的情况总数。

具体思路:首先把每一种情况的个数算出来(两个数相加的结果),然后再就是去重的过程。

(因为题目中会有负数,我们可以全部转换成非负数去进行计算)

1,自己和自己相加。

2,1+0=1,0+1=1这个时候,1是使用了两次,所以需要去掉这种情况,就是去掉(0的总数)*2.

3,0+0=0,0+0=0,这个时候我们可以按照第一种的思路来(这个时候i!=j,因为自己加自己情况已经去掉了),把其中一个0看成(非0的数),然后再按照公式进行计算,不过计算的时候是(0的总数-1)*2.

AC代码:

 #include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<stdio.h>
using namespace std;
# define ll long long
const double PI = acos(-1.0);
const int maxn = 2e5+;
struct complex
{
double r,i;
complex(double _r = ,double _i = )
{
r = _r;
i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
void change(complex y[],int len)
{
int i,j,k;
for(i = , j = len/; i < len-; i++)
{
if(i < j)
swap(y[i],y[j]);
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k)
j += k;
}
}
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ; j < len; j += h)
{
complex w(,);
for(int k = j; k < j+h/; k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ; i < len; i++)
y[i].r /= len;
}
const int T=5e4;
complex x1[maxn<<];
ll num[maxn<<],a[maxn<<],b[maxn<<];
int main()
{
int n;
scanf("%d",&n);
int ans=;
int len=;
while(len<maxn)
len<<=;
for(int i=; i<n; i++)
{
scanf("%lld",&a[i]);
if(a[i]==)
ans++;
b[a[i]+T]++;
}
for(int i=; i<len; i++)
{
x1[i]=complex(b[i],);
}
fft(x1,len,);
for(int i=; i<len; i++)
{
x1[i]=x1[i]*x1[i];
}
fft(x1,len,-);
for(int i=; i<len; i++)
{
num[i]=(ll)(x1[i].r+0.5);
}
for(int i=; i<n; i++)
{
num[(a[i]+T)*]--;
}//重复的去掉
ll sum=;
// cout<<num[T+T]<<endl;
for(int i=; i<n; i++)
{
sum+=num[a[i]+*T];//比如说 1 2 3 ,我们现在要计算能组成3的个数,也就是3加上 2 个T,因为他的两个因子分别有一个T
sum-=(ans-(a[i]==))*;// 0+4 =4 ,4+0=4,这个时候4是用了两遍的,所以减去的就应该是ans*2。
// 对于0+0等于0,这种情况,如果说当前只有两个0的话,num[0]是等于2的(去重之后),这个时候我们就把其中一个0看成非0的,然后再按照上面的步骤进行计算。
}
printf("%lld\n",sum);
return ;
}

(FFT)A+B Problem的更多相关文章

  1. hihocoder 1388 fft循环矩阵

    #1388 : Periodic Signal 时间限制:5000ms 单点时限:5000ms 内存限制:256MB 描述 Profess X is an expert in signal proce ...

  2. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. hdu----(1402)A * B Problem Plus(FFT模板)

    A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. 【HDU1402】【FFT】A * B Problem Plus

    Problem Description Calculate A * B. Input Each line will contain two integers A and B. Process to e ...

  5. hdu 1402 A * B Problem Plus FFT

    /* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...

  6. A * B Problem Plus(fft)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1402 hdu_1402:A * B Problem Plus Time Limit: 2000/100 ...

  7. [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  8. 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)

    洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...

  9. CF1153F Serval and Bonus Problem FFT

    CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ...

随机推荐

  1. 四种遍历hashMap的方法及比较

    学习怎样遍历Java hashMap及不同方法的性能. // hashMap的遍历 public void testHashMap() { Map<String, String> map ...

  2. SQLite与ContentProvider

    http://www.rom007.com/SQLite-yu-ContentProvider.html 在Android中,对于数据的存贮,有几种方式,有文件方式,有文件式数据库方式,Android ...

  3. 美食查询手机应用"吃了么":NABC

    一 N(need) 当你在一个陌生的地方游玩,想吃到当地的招牌美食时怎么办? 当你听说有一个很好吃的家常菜,也想自己下厨试试时怎么办?打印出菜谱,还是奔波于厨房和电脑之前? 查询周边美食的功能对于那些 ...

  4. 20135220谈愈敏Blog1_计算机是如何工作的

    计算机是如何工作的 存储程序计算机工作模型 冯诺依曼体系结构 从硬件角度来看:CPU和内存,由总线连接,CPU中有一个名为IP的寄存器,总是指向内存的某一块:CS,代码段,执行命令时就取IP指向的一条 ...

  5. Leetcode题库——38.报数

    @author: ZZQ @software: PyCharm @file: countAndSay.py @time: 2018/11/9 14:07 说明:报数序列是一个整数序列,按照其中的整数的 ...

  6. Beta冲刺——day3

    Beta冲刺--day3 作业链接 Beta冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602134 王龙 ...

  7. bash基本功能 -命令的别名和快捷键

    命令的别名 == 人的小名 如何查看和设定别名 alias 查看系统中的所有别名 ls --color=auto alias ll = 'ls - l --color=auto' touch abc ...

  8. Linux命令(八)过滤文本 grep

    grep 命令介绍 grep是一个强大的文本搜索工具命令,用于查找文件中符合指定格式的字符串,支持正则表达式.如不指定任何文件名称,或是文件名为 -,则gerp命令从标准输入设备中读取数据. grep ...

  9. Node.js使用UDP通讯

    Node.js 的 dgram 模块可以方便的创建udp服务,,以下是使用 dgram模块创建的udp服务和客户端的一个简单例子. 一.创建 UDP Server var dgram = requir ...

  10. 群里提到的IE设置问题 ---B/S 下页面刷新问题

    这里面四个选项的含义 下面是每个选项的作用和意义: 1. “每次访问此页时检查”选项表示浏览器每次访问一个页面时,不管浏览器是否缓存过此页面,都要向服务器发出访问请求.这种设置的优点是实时性很强,肯定 ...