hdu 5773 The All-purpose Zero 线段树 dp
The All-purpose Zero
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5773
Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
Sample Input
2
7
2 0 2 1 2 0 5
6
1 2 3 3 0 0
Sample Output
Case #1: 5
Case #2: 5
Hint
In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
Hint
题意
给你n个数,其中0可以变成任何数,问你最长上升子序列可以是多少
题解:
考虑dp[i]表示长度为i的lis的最后一个数是多少。
遇到0的时候,就相当于dp[i]原来等于v,现在dp[i+1]=v+1了,这样的转移。
其实就相当于整体向右平移。
这个我们就在线段树上预先留很多个位置,让起点向左边平移就好了嘛,嘿嘿嘿。
代码
#include <bits/stdc++.h>
#define rep(a,b,c) for(int (a)=(b);(a)<=(c);++(a))
#define drep(a,b,c) for(int (a)=(b);(a)>=(c);--(a))
#define pb push_back
#define mp make_pair
#define sf scanf
#define pf printf
#define two(x) (1<<(x))
#define clr(x,y) memset((x),(y),sizeof((x)))
#define dbg(x) cout << #x << "=" << x << endl;
const int mod = 1e9 + 7;
int mul(int x,int y){return 1LL*x*y%mod;}
int qpow(int x , int y){int res=1;while(y){if(y&1) res=mul(res,x) ; y>>=1 ; x=mul(x,x);} return res;}
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}
using namespace std;
const int maxn = 1e5 + 15;
const int inf = 0x3f3f3f3f;
int a[maxn],len[maxn],N,tot,C,Midpoint;
struct Sgtree{
struct node{
int l , r , maxv , lazy;
void Update( int x ){
lazy += x;
maxv += x;
}
}tree[maxn << 3];
void ReleaseLabel( int o ){
if( tree[o].lazy ){
tree[o << 1].Update( tree[o].lazy );
tree[o << 1 | 1].Update( tree[o].lazy );
tree[o].lazy = 0 ;
}
}
void Maintain( int o ){
tree[o].maxv = max( tree[o << 1].maxv , tree[o << 1 | 1 ].maxv );
}
void Build(int l , int r , int o){
tree[o].l = l , tree[o].r = r , tree[o].maxv = inf , tree[o].lazy = 0;
if( r > l ){
int mid = l + r >> 1;
Build( l , mid , o << 1 );
Build( mid + 1 , r , o << 1 | 1 );
Maintain( o );
}else if( l <= Midpoint ) tree[o].maxv = -5*N - 5;
}
void Modify( int ql , int qr , int v , int o ){
int l = tree[o].l , r = tree[o].r;
if( ql <= l && r <= qr ) tree[o].Update( v );
else{
int mid = l + r >> 1;
ReleaseLabel( o );
if( ql <= mid ) Modify( ql , qr , v , o << 1 );
if( qr > mid ) Modify( ql , qr , v , o << 1 | 1 );
Maintain( o );
}
}
void Change( int x , int v , int o ){
int l = tree[o].l , r = tree[o].r;
if( l == r ) tree[o].maxv = min( tree[o].maxv , v );
else{
int mid = l + r >> 1;
ReleaseLabel( o );
if( x <= mid ) Change( x, v , o << 1 );
else Change( x, v , o << 1 | 1 );
Maintain( o );
}
}
void Search( int v , int o ){
int l = tree[o].l , r = tree[o].r;
if( l == r ) tree[o].maxv = min( tree[o].maxv , v );
else{
int mid = l + r >> 1;
ReleaseLabel( o );
if( tree[o << 1].maxv >= v ) Search( v , o << 1 );
else Search( v , o << 1 | 1 );
Maintain( o );
}
}
int Ask( int x , int o ){
int l = tree[o].l , r = tree[o].r;
if( l == r ) return tree[o].maxv;
else{
int mid = l + r >> 1;
ReleaseLabel( o );
int v;
if( x <= mid ) v = Ask( x , o << 1 );
else v = Ask( x , o << 1 | 1 );
Maintain( o );
return v;
}
}
}Sgtree;
void solve( int cas ){
Midpoint = N + 5;
Sgtree.Build( 1 , N * 2 + 500 , 1 );
int extra = 0;
rep(i,1,N){
int x = a[i];
if( x == 0 ){
++ Sgtree.tree[1].lazy; // 右移一位
Sgtree.Change( -- Midpoint , -5*N - 5 , 1 );
++ extra;
//cout << "i is " << i << endl;
//rep(j,0,N+extra-1) pf("len[%d] is %d\n" , j , Sgtree.Ask(Midpoint+j,1));
//cout << "---------" << endl;
}else Sgtree.Search( x , 1 );
}
int mx = 0;
rep(i,0,N+extra-1) if( Sgtree.Ask( Midpoint + i , 1 ) <= 10000000 ) mx = max( mx , i );
pf("Case #%d: %d\n",cas,mx);
}
int main(int argc,char *argv[]){
int T=read(),cas=0;
while(T--){
N=read();
rep(i,1,N) a[i] = read();
solve( ++ cas );
}
return 0;
}
hdu 5773 The All-purpose Zero 线段树 dp的更多相关文章
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模
Multiply game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)
HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意: 给一个序列由 ...
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
- 【HDU 5647】DZY Loves Connecting(树DP)
pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...
- hdu 1556:Color the ball(线段树,区间更新,经典题)
Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- HDU 1394 Minimum Inversion Number(线段树/树状数组求逆序数)
Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- HDU 5029 Relief grain(离线+线段树+启发式合并)(2014 ACM/ICPC Asia Regional Guangzhou Online)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5029 Problem Description The soil is cracking up beca ...
- hdu 1255 覆盖的面积(线段树 面积 交) (待整理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. In ...
随机推荐
- bzoj千题计划203:bzoj3994: [SDOI2015]约数个数和
http://www.lydsy.com/JudgeOnline/problem.php?id=3994 设d(x)为x的约数个数,给定N.M,求 用到的一个结论: 证明: 枚举n的约数i,枚举m的约 ...
- 何凯文每日一句打开||DAY8
- MySQL V5.6.37升级到V5.6.38
简单!万事先备份 cp /usr/my.cnf /home/xx/ cp -r /var/lib/mysql/dbname /home/xx/ mysqldump -u root -ppasswd - ...
- RESET MASTER和RESET SLAVE使用场景和说明【转】
[前言]在配置主从的时候经常会用到这两个语句,刚开始的时候还不清楚这两个语句的使用特性和使用场景. 经过测试整理了以下文档,希望能对大家有所帮助: [一]RESET MASTER参数 功能说明:删除所 ...
- centos7系统下安装配置jdk、tomcat教程
JDK安装与配置 1.下载linux版本的jdk,我下的版本是jdk6.0,下载rpm版本的. 可通过百度搜索文件名:jdk-6u45-linux-x64-rpm.bin下载 也可通过oracle官网 ...
- Uploadify3.2中文提示
版本:Uploadify Version 3.2官网:http://www.uploadify.com Uploadify是一款基于Jquery的上传插件,用起来很方便.但上传过程中的提示语言为英文, ...
- centos:SSH登录时间很慢
vi /etc/ssh/sshd_config GSSAPIAuthentication 改为 no 开启UseDNS,值改为 no service sshd restart
- 再谈CentOS 7程序自启动
上次发现了/etc/init.d下已经没有启动脚本了,然后对于启动乱序自己在rc.local中重排. 其实想一想这些应用的自启动终归还是需要通过脚本来执行的. 一.脚本在哪里? /usr/lib/sy ...
- SqlServer导入Excel数据
一:创建数据库: CREATE TABLE IndustrialTownTB ( [ID] [NVARCHAR](36) PRIMARY KEY NOT NULL , IndustrialNewCit ...
- IDEA下利用Jrebel插件实现JFinal项目main方法【热加载】
IDEA下利用Jrebel插件实现JFinal项目main方法[热加载] Jrebel破解办法 https://github.com/ilanyu/ReverseProxy/releases/tag/ ...