样本文件下载:ex2Data.zip

ex2x.dat文件中是一些2-8岁孩子的年龄。

ex2y.dat文件中是这些孩子相对应的体重。

我们尝试用批量梯度下降法,随机梯度下降法和小批量梯度下降法来对这些数据进行线性回归,线性回归原理在:http://www.cnblogs.com/mikewolf2002/p/7560748.html

1.批量梯度下降法(BGD)

BGD.m代码:

clear all; close all; clc;
x = load('ex2x.dat'); %装入样本输入特征数据到x,年龄
y = load('ex2y.dat'); %装入样本输出结果数据到y,身高
figure('name','线性回归-批量梯度下降法');
plot(x,y,'o') %把样本在二维坐标上画出来
xlabel('年龄') %x轴说明
ylabel('身高') %y轴说明 m = length(y); % 样本数目
x = [ones(m, 1), x]; % 输入特征增加一列,x0=1
theta = zeros(size(x(1,:)))'; % 初始化theta MAX_ITR = 1500;%最大迭代数目
alpha = 0.07; %学习率
i = 0;
while(i<MAX_ITR)
grad = (1/m).* x' * ((x * theta) - y);%求出梯度
theta = theta - alpha .* grad;%更新theta
if(i>2)
delta = old_theta-theta;
delta_v = delta.*delta;
if(delta_v<0.000000000000001)%如果两次theta的内积变化很小,退出迭代
break;
end
end
old_theta = theta;
i=i+1;
end
i
theta
predict1 = [1, 3.5] *theta
predict2 = [1, 7] *theta
hold on
plot(x(:,2), x*theta, '-') % x现在是一个2列的矩阵
legend('训练数据', '线性回归')%标记每个数据设置

程序输结果如下:迭代次数达到了上限1500次,最后梯度下降法求解的theta值为\([0.7502,0.0639]^T\),两个预测值3.5岁,预测身高为0.9737米,7岁预测为1.1973米。

注意学习率的选择很重要,如果选择太大,可能不能得到收敛的\(\theta\)值。

i =

        1500

theta =

    0.7502
0.0639 predict1 = 0.9737 predict2 = 1.1973

2.随机梯度下降法

sgd.m代码如下,注意最大迭代次数增加到了15000,1500次迭代不能得到收敛的点,可见随机梯度下降法,虽然计算梯度时候,工作量减小,但是因为不是最佳的梯度下降方向,可能会使得迭代次数增加:

clear all; close all; clc;
x = load('ex2x.dat');
y = load('ex2y.dat');
figure('name','线性回归-随机梯度下降法');
plot(x,y,'o')
xlabel('年龄') %x轴说明
ylabel('身高') %y轴说明
m = length(y); % 样本数目
x = [ones(m, 1), x]; % 输入特征增加一列
theta = zeros(size(x(1,:)))';%初始化theta MAX_ITR = 15000;%最大迭代数目
alpha = 0.01;%学习率
i = 0;
while(i<MAX_ITR)
%j = unidrnd(m);%产生一个最大值为m的随机正整数j,j为1到m之间
j = mod(i,m)+1;
%注意梯度的计算方式,每次只取一个样本数据,通过轮转的方式取到每一个样本。
grad = ((x(j,:)* theta) - y(j)).*x(j,:)';
theta = theta - alpha * grad;
if(i>2)
delta = old_theta-theta;
delta_v = delta.*delta;
if(delta_v<0.0000000000000000001)
break;
end
end
old_theta = theta;
i=i+1;
end
i
theta
predict1 = [1, 3.5] *theta
predict2 = [1, 7] *theta
hold on
plot(x(:,2), x*theta, '-')
legend('训练数据', '线性回归')

程序结果输出如下:

i =

       15000

theta =

    0.7406
0.0657 predict1 = 0.9704 predict2 = 1.2001

3.小批量梯度下降法

mbgd.m代码如下,程序中批量的样本数目,我们选择5:

clear all; close all; clc;
x = load('ex2x.dat');
y = load('ex2y.dat');
figure('name','线性回归-小批量梯度下降法')
plot(x,y,'o')
xlabel('年龄') %x轴说明
ylabel('身高') %y轴说明
m = length(y); % 样本数目 x = [ones(m, 1), x]; % 输入特征增加一列
theta = zeros(size(x(1,:)))'; %初始化theta MAX_ITR = 15000;%最大迭代数目
alpha = 0.01;%学习率
i = 0;
b = 5; %小批量的数目
while(i<MAX_ITR)
j = mod(i,m-b)+1;
%每次计算梯度时候,只考虑b个样本数据
grad = (1/b).*x(j:j+b,:)'*((x(j:j+b,:)* theta) - y(j:j+b));
theta = theta - alpha * grad;
if(i>2)
delta = old_theta-theta;
delta_v = delta.*delta;
if(delta_v<0.0000000000000000001)
break;
end
end
old_theta = theta;
i=i+b;
end
i
theta
predict1 = [1, 3.5] *theta
predict2 = [1, 7] *theta
hold on
plot(x(:,2), x*theta, '-')
legend('训练数据', '线性回归')

程序的输出结果:

i =

       15000

theta =

    0.7418
0.0637 predict1 = 0.9647 predict2 = 1.1875

matlib实现梯度下降法的更多相关文章

  1. matlib实现梯度下降法(序一)

    数据来源:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant 数据描述: 有四个输入特征,这些数据来自电厂,这四个特征和 ...

  2. [Machine Learning] 梯度下降法的三种形式BGD、SGD以及MBGD

    在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. ...

  3. 机器学习基础——梯度下降法(Gradient Descent)

    机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...

  4. 一种利用 Cumulative Penalty 训练 L1 正则 Log-linear 模型的随机梯度下降法

    Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L ...

  5. coursera机器学习笔记-机器学习概论,梯度下降法

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  6. 重新发现梯度下降法--backtracking line search

    一直以为梯度下降很简单的,结果最近发现我写的一个梯度下降特别慢,后来终于找到原因:step size的选择很关键,有一种叫backtracking line search的梯度下降法就非常高效,该算法 ...

  7. 梯度下降法VS随机梯度下降法 (Python的实现)

    # -*- coding: cp936 -*- import numpy as np from scipy import stats import matplotlib.pyplot as plt # ...

  8. Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)

    Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯 ...

  9. 理解梯度下降法(Gradient Decent)

    1. 什么是梯度下降法?   梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用 ...

随机推荐

  1. CentOS 7下升级MySQL5.7.23的一个坑

    发现CentOS 7下升级MySQL5.7.23的一个坑,以前面升级到MySQL 5.7.23的一个集群为例 在我们环境下打开文件描述符个数的参数open_files_limit在MySQL 5.6. ...

  2. Chart.js Y轴数据以百分比展示

    新手一枚,解决的问题喜欢记录,也许正好有人在网上迷茫的百度着.-0- 最近使用Chart.js做折线图的报表展示,直接显示整数啥的很好弄毕竟例子直接在哪里可以用,百分比就没办法了.百度慢慢汲取营养,虽 ...

  3. @repository的含义,并且有时候却不用写,为什么?

    //最后发现是这样的:@repository跟@Service,@Compent,@Controller这4种注解是没什么本质区别,都是声明作用,取不同的名字只是为了更好区分各自的功能.下图更多的作用 ...

  4. android 静音

    语音朗读 静音,设置变量识别好了. android插件下载开发. 实际可以这样, 保存应用的图标,名称,包名,下载地址. 插件作为apk.  或许希望apk不在桌面有图标.也可以.但是也没必要. 当下 ...

  5. git指南目录

    git指南目录 发表回复 蓝色表示未阅读,棕色表示阅读过,绿色表示阅读过但不太理解 1. 起步 1.1 关于版本控制 1.2 Git 简史 1.3 Git 基础 1.4 安装 Git 1.5 初次运行 ...

  6. BZOJ3459 : Bomb

    二分答案,转化成判定所有科学家能否在lim时间内走到安全的地方 考虑网络流,对于每个非叶子节点,S向它连边,容量为该点科学家的人数 对于每个叶子节点,向T连边,容量为该点的容量 对于每个非叶子节点x, ...

  7. C#中四种常用集合的运用(非常重要)

    C#中4个常用的集合 1.ArrayList ArrayList类似于数组,有人也称它为数组列表.ArrayList可以动态维护,而数组的容量是固定的. 它的索引会根据程序的扩展而重新进行分配和调整. ...

  8. java并发基础(五)--- 线程池的使用

    第8章介绍的是线程池的使用,直接进入正题. 一.线程饥饿死锁和饱和策略 1.线程饥饿死锁 在线程池中,如果任务依赖其他任务,那么可能产生死锁.举个极端的例子,在单线程的Executor中,如果一个任务 ...

  9. gitblit.cmd运行自动关闭

    前几天运行gitblit.cmd一直正常,今天运行gitblit.cmd,几秒钟后命令行窗口就自动关闭了,导致无法启动gitblit服务器,查看日志如下: 刚开始以为是防火墙问题,在防火墙中添加了程序 ...

  10. 面试题07_用两个栈实现队列——剑指offer系列

    题目描写叙述: 用两个栈实现一个队列. 队列的声明例如以下,请实现它的两个函数appendTail 和 deleteHead.分别完毕在队列尾部插入结点和在队列头部删除结点的功能. 解题思路: 栈的特 ...