Compact主要涉及以下几个组件

  • CompactManager 管理Compact task
  • CompactRewriter 用于compact过程中数据的重写实现, 比如compact过程中产生changelog等
  • CompactStrategy 决定哪些文件需要被compact

Append Only表

对于Append Only表, compaction过程主要是为了合并小文件, 主要实现逻辑在AppendOnlyCompactManager 在每次Checkpoint或者主动触发compact时 会进行Compaction.

Compaction会分为Full Compaction和Auto Compaction. 一个会处理本批的全部文件,一个是处理部分文件.

CompactRewriter的行为就是把老数据读出来重写

Primary Key表

  1. pick 会根据CompactStrategy挑选需要Compact的文件. 如果是Full compact的话会将所有的文件挑选出来
  2. 对SortedRun 进行partition.
  3. 通过SortMegeReader将原文件中数据读取出来合并
  4. 合并完的结果写入新的文件, 如果过程中有产生Changelog的需求, 那么会在MergeFunction的实现中产生出Changelog, 并写到Changelog文件中去.
  5. CompactResult包含了 三组文件: before , after, changelog文件

CompactStrategy

Paimon的LSM结构

L0 每一个文件对应一个sorted run, L0往下每一层有一个sorted run. 每一个sorted run 对应一个或多个文件,文件写到一定大小就会rolling out. 所以同一层的sorted run看做是一个全局按照pk排序的文件.

一个文件中的文件会按照primary key排序. 一个Sorted Run中的各个文件之间的key range不会重叠. 但是不同的sorted run之间key range是会重叠的.



和Rocksdb中sorted run的定义也是一样

Universal Compaction

CompactionStrategy主要就是决定有哪些文件要参与compaction, compaction的目的是为了减少不同的sorted run之间key的overlap, 提升查询效率, 减少数据重复.

Paimon中默认采用的是类似RocksDB Universal compaction. Compacion的策略分为两大类level compaction 和 size tiered compaction. Universal compaction 是Rocksdb的size tiered compaction的实现. size tiered compaction 比较适合 write intensive 的 workload, 数据湖场景也是高密度写入的场景, 猜测因此把Universal compaction 策略作为默认的compaction策略.

如Rocksdb的wiki所描述, Universal compaction是一个写放大相对较小, 但是读放大和空间放大比较大.

Universal Compaction Style is a compaction style, targeting the use cases requiring lower write amplification, trading off read amplification and space amplification.

这个算法策略的基本思想

The basic idea of the compaction style: with a threshold of number of sorted runs N, we only start compaction when number of sorted runs reaches N. When it happens, we try to pick files to compact so that number of sorted runs is reduced in the most economic way: (1) it starts from the smallest file; (2) one more sorted run is included if its size is no larger than the existing compaction size. The strategy assumes and itself tries to maintain that the sorted run containing more recent data is smaller than ones containing older data.

  1. 有限个sorted run,当达到这么多sorted run时就触发compact
  2. 触发compact时 使用最经济的方式减少sorted run的个数
    1. 从最小的文件开始
    2. 如果其大小不大于下一个的Sorted run的大小,则再包含一个Sorted run
    3. 该策略假设并试图保持包含较新数据的Sorted run 的个数小于包含较旧数据的Sorted run

由Space Amplification触发的合并

判断R1-R(n-1) sorted run大小有没有超过 最高层(最老数据)的两倍, 超过了那就触发一次full compaction.

size amplification ratio = (size(R1) + size(R2) + ... size(Rn-1)) / size(Rn)

空间放大为什么这么算

由Individual Size Ratio触发的合并

size_ratio_trigger = (100 + options.compaction_options_universal.size_ratio) / 100

我们从R1开始,如果size(R2) / size(R1) <= size_ratio_trigger, 那么(R1,R2)被合并到一起。我们以此继续决定R3是不是可以加进来。如果size(R3) / size(R1+r2) <= size_ratio_trigger,R3应该被包含,得到(R1,R2,R3)。然后我们对R4做同样的事情。我们一直用所有已有的大小总和,跟下一个排序结果比较,直到size_ratio_trigger条件不满足。

1 1 1 1 1  =>  5
1 5 (no compaction triggered)
1 1 5 (no compaction triggered)
1 1 1 5 (no compaction triggered)
1 1 1 1 5 => 4 5
1 4 5 (no compaction triggered)
1 1 4 5 (no compaction triggered)
1 1 1 4 5 => 3 4 5
1 3 4 5 (no compaction triggered)
1 1 3 4 5 => 2 3 4 5

paimon中默认size ratio 是1%, 也就是前N个的size 之和 / 第N+1个的 size <= 101/100, 那么就合并这N+1个sorted run.

这个策略的效果有点类似于是除了最高层之外, 把各个sorted run的大小尽可能靠近对齐

Full Compaction

全部文件参与compaction, 并合并到maxlevel

参考

https://github.com/facebook/rocksdb/wiki/Universal-Compaction

https://blog.csdn.net/qq_40586164/article/details/117914647

https://zhuanlan.zhihu.com/p/141186118

https://zhuanlan.zhihu.com/p/165137544

Paimon Compaction实现的更多相关文章

  1. Rocksdb Compaction原理

    概述 compaction主要包括两类:将内存中imutable 转储到磁盘上sst的过程称之为flush或者minor compaction:磁盘上的sst文件从低层向高层转储的过程称之为compa ...

  2. leveldb源码分析--SSTable之Compaction

    对于compaction是leveldb中体量最大的一部分,也应该是最为复杂的部分,为了便于理解我们首先从一些基本的概念开始.下面是一些从doc/impl.html中翻译和整理的内容: Level 0 ...

  3. RocksDB笔记 - Compaction中的Iterator

    Compaction中的Iterator 一般来说,Compaction的Input涉及两层数据的合并,对于涉及到的每一层数据: 如果是level-0,对level-0的每一个sstable文件建立一 ...

  4. hbase中Compaction的理解及RegionServer内存的使用,CacheBlock机制

    Compaction有两种类型: (1)minor compaction:属于轻量级.将多个小的storefile文件重写为数量较少的大storefile文件,减少存储文件的数量,实际上是个多路归并的 ...

  5. LevelDB的源码阅读(四) Compaction操作

    leveldb的数据存储采用LSM的思想,将随机写入变为顺序写入,记录写入操作日志,一旦日志被以追加写的形式写入硬盘,就返回写入成功,由后台线程将写入日志作用于原有的磁盘文件生成新的磁盘数据.Leve ...

  6. HBase MetaStore和Compaction剖析

    1.概述 客户端读写数据是先从HBase Master获取RegionServer的元数据信息,比如Region地址信息.在执行数据写操作时,HBase会先写MetaStore,为什么会写到MetaS ...

  7. Stripe Compaction

    借鉴于LevelDB.Cassandra的Compaction方法,https://issues.apache.org/jira/browse/HBASE-7667 提出了Stripe Compact ...

  8. HBase Compaction

    当 client 向 hregion 端 put() 数据时, HRegion 会判断当前的 memstore 的大小是否大于参数hbase.hregion.memstore.flush.size 值 ...

  9. HBase写入性能及改造——multi-thread flush and compaction(续:详细测试数据)[转]

    转载:http://blog.csdn.net/kalaamong/article/details/7290192 接上文啊: 测试机性能 CPU 16* Intel(R) Xeon(R) CPU   ...

  10. HBase Compaction详解

    HBase Compaction策略 RegionServer这种类LSM存储引擎需要不断的进行Compaction来减少磁盘上数据文件的个数和删除无用的数据从而保证读性能. RegionServer ...

随机推荐

  1. python之pdf转换操作 PyMuPDF库学习

    1. 资料链接github地址: pymupdf/PyMuPDF: Python bindings for MuPDF's rendering library官方手册: PyMuPDF Documen ...

  2. 五月十五日java基础知识点

    1.匿名内部类适用于编写事件程序 interface Ishape{ void shape(); } class MyType{ public void outShape(Ishape s){//接口 ...

  3. python从shp文件中读取经纬度数据

    python从shp文件中读取经纬度数据 没有接触过GIS的人来说shp文件很陌生而且很难打开查看,好在python可以从中提取出自己想要的数据 pyshp库的安装 python的pyshp库可以实现 ...

  4. Yii初学者必看-yii 表单验证规则

    对yii深入了解总结出:希望对初学者有些帮助 Active Record (AR) 是一个流行的 对象-关系映射 (ORM) 技术. 每个 AR 类代表一个数据表(或视图),数据表(或视图)的列在 A ...

  5. 【能力提升】SQL Server常见问题介绍及快速解决建议

    前言 本文旨在帮助SQL Server数据库的使用人员了解常见的问题,及快速解决这些问题.这些问题是数据库的常规管理问题,对于很多对数据库没有深入了解的朋友提供一个大概的常见问题框架. 下面一些问题是 ...

  6. React redux toolkit: Uncaught Error:[Immer] An immer producer returned a new...

    React在写一个购物车的redux toolkit时遇到了问题.核心代码如下: import { createSlice } from "@reduxjs/toolkit"; c ...

  7. HDCTF_2023

    pwnner 附件 有后门函数,seed是一个固定值, //伪随机数 #include <stdio.h> #include <stdlib.h> int main() { i ...

  8. Django笔记三十一之全局异常处理

    本文首发于公众号:Hunter后端 原文链接:Django笔记三十一之全局异常处理 这一篇笔记介绍 Django 的全局异常处理. 当我们在处理一个 request 请求时,会尽可能的对接口数据的格式 ...

  9. Qt第三方库QtAV--- ubuntu编译与运行

    Qt第三方库QtAV--- ubuntu编译与运行 今天又要接触这个,把一些错误或者不足的地方重新补充下!!!由于前面一段时间,项目中需要借助QtAV接口进行视频播放,特此记录下整个配置过程.整个代码 ...

  10. golang技术栈常见网址

    go所有,包含goadmin golang标准库文档 golang修养之路 Golang Profiling: 关于 pprof go问题 go语言设计与实现 go.mod解析 proto3 prot ...