Compact主要涉及以下几个组件

  • CompactManager 管理Compact task
  • CompactRewriter 用于compact过程中数据的重写实现, 比如compact过程中产生changelog等
  • CompactStrategy 决定哪些文件需要被compact

Append Only表

对于Append Only表, compaction过程主要是为了合并小文件, 主要实现逻辑在AppendOnlyCompactManager 在每次Checkpoint或者主动触发compact时 会进行Compaction.

Compaction会分为Full Compaction和Auto Compaction. 一个会处理本批的全部文件,一个是处理部分文件.

CompactRewriter的行为就是把老数据读出来重写

Primary Key表

  1. pick 会根据CompactStrategy挑选需要Compact的文件. 如果是Full compact的话会将所有的文件挑选出来
  2. 对SortedRun 进行partition.
  3. 通过SortMegeReader将原文件中数据读取出来合并
  4. 合并完的结果写入新的文件, 如果过程中有产生Changelog的需求, 那么会在MergeFunction的实现中产生出Changelog, 并写到Changelog文件中去.
  5. CompactResult包含了 三组文件: before , after, changelog文件

CompactStrategy

Paimon的LSM结构

L0 每一个文件对应一个sorted run, L0往下每一层有一个sorted run. 每一个sorted run 对应一个或多个文件,文件写到一定大小就会rolling out. 所以同一层的sorted run看做是一个全局按照pk排序的文件.

一个文件中的文件会按照primary key排序. 一个Sorted Run中的各个文件之间的key range不会重叠. 但是不同的sorted run之间key range是会重叠的.



和Rocksdb中sorted run的定义也是一样

Universal Compaction

CompactionStrategy主要就是决定有哪些文件要参与compaction, compaction的目的是为了减少不同的sorted run之间key的overlap, 提升查询效率, 减少数据重复.

Paimon中默认采用的是类似RocksDB Universal compaction. Compacion的策略分为两大类level compaction 和 size tiered compaction. Universal compaction 是Rocksdb的size tiered compaction的实现. size tiered compaction 比较适合 write intensive 的 workload, 数据湖场景也是高密度写入的场景, 猜测因此把Universal compaction 策略作为默认的compaction策略.

如Rocksdb的wiki所描述, Universal compaction是一个写放大相对较小, 但是读放大和空间放大比较大.

Universal Compaction Style is a compaction style, targeting the use cases requiring lower write amplification, trading off read amplification and space amplification.

这个算法策略的基本思想

The basic idea of the compaction style: with a threshold of number of sorted runs N, we only start compaction when number of sorted runs reaches N. When it happens, we try to pick files to compact so that number of sorted runs is reduced in the most economic way: (1) it starts from the smallest file; (2) one more sorted run is included if its size is no larger than the existing compaction size. The strategy assumes and itself tries to maintain that the sorted run containing more recent data is smaller than ones containing older data.

  1. 有限个sorted run,当达到这么多sorted run时就触发compact
  2. 触发compact时 使用最经济的方式减少sorted run的个数
    1. 从最小的文件开始
    2. 如果其大小不大于下一个的Sorted run的大小,则再包含一个Sorted run
    3. 该策略假设并试图保持包含较新数据的Sorted run 的个数小于包含较旧数据的Sorted run

由Space Amplification触发的合并

判断R1-R(n-1) sorted run大小有没有超过 最高层(最老数据)的两倍, 超过了那就触发一次full compaction.

size amplification ratio = (size(R1) + size(R2) + ... size(Rn-1)) / size(Rn)

空间放大为什么这么算

由Individual Size Ratio触发的合并

size_ratio_trigger = (100 + options.compaction_options_universal.size_ratio) / 100

我们从R1开始,如果size(R2) / size(R1) <= size_ratio_trigger, 那么(R1,R2)被合并到一起。我们以此继续决定R3是不是可以加进来。如果size(R3) / size(R1+r2) <= size_ratio_trigger,R3应该被包含,得到(R1,R2,R3)。然后我们对R4做同样的事情。我们一直用所有已有的大小总和,跟下一个排序结果比较,直到size_ratio_trigger条件不满足。

1 1 1 1 1  =>  5
1 5 (no compaction triggered)
1 1 5 (no compaction triggered)
1 1 1 5 (no compaction triggered)
1 1 1 1 5 => 4 5
1 4 5 (no compaction triggered)
1 1 4 5 (no compaction triggered)
1 1 1 4 5 => 3 4 5
1 3 4 5 (no compaction triggered)
1 1 3 4 5 => 2 3 4 5

paimon中默认size ratio 是1%, 也就是前N个的size 之和 / 第N+1个的 size <= 101/100, 那么就合并这N+1个sorted run.

这个策略的效果有点类似于是除了最高层之外, 把各个sorted run的大小尽可能靠近对齐

Full Compaction

全部文件参与compaction, 并合并到maxlevel

参考

https://github.com/facebook/rocksdb/wiki/Universal-Compaction

https://blog.csdn.net/qq_40586164/article/details/117914647

https://zhuanlan.zhihu.com/p/141186118

https://zhuanlan.zhihu.com/p/165137544

Paimon Compaction实现的更多相关文章

  1. Rocksdb Compaction原理

    概述 compaction主要包括两类:将内存中imutable 转储到磁盘上sst的过程称之为flush或者minor compaction:磁盘上的sst文件从低层向高层转储的过程称之为compa ...

  2. leveldb源码分析--SSTable之Compaction

    对于compaction是leveldb中体量最大的一部分,也应该是最为复杂的部分,为了便于理解我们首先从一些基本的概念开始.下面是一些从doc/impl.html中翻译和整理的内容: Level 0 ...

  3. RocksDB笔记 - Compaction中的Iterator

    Compaction中的Iterator 一般来说,Compaction的Input涉及两层数据的合并,对于涉及到的每一层数据: 如果是level-0,对level-0的每一个sstable文件建立一 ...

  4. hbase中Compaction的理解及RegionServer内存的使用,CacheBlock机制

    Compaction有两种类型: (1)minor compaction:属于轻量级.将多个小的storefile文件重写为数量较少的大storefile文件,减少存储文件的数量,实际上是个多路归并的 ...

  5. LevelDB的源码阅读(四) Compaction操作

    leveldb的数据存储采用LSM的思想,将随机写入变为顺序写入,记录写入操作日志,一旦日志被以追加写的形式写入硬盘,就返回写入成功,由后台线程将写入日志作用于原有的磁盘文件生成新的磁盘数据.Leve ...

  6. HBase MetaStore和Compaction剖析

    1.概述 客户端读写数据是先从HBase Master获取RegionServer的元数据信息,比如Region地址信息.在执行数据写操作时,HBase会先写MetaStore,为什么会写到MetaS ...

  7. Stripe Compaction

    借鉴于LevelDB.Cassandra的Compaction方法,https://issues.apache.org/jira/browse/HBASE-7667 提出了Stripe Compact ...

  8. HBase Compaction

    当 client 向 hregion 端 put() 数据时, HRegion 会判断当前的 memstore 的大小是否大于参数hbase.hregion.memstore.flush.size 值 ...

  9. HBase写入性能及改造——multi-thread flush and compaction(续:详细测试数据)[转]

    转载:http://blog.csdn.net/kalaamong/article/details/7290192 接上文啊: 测试机性能 CPU 16* Intel(R) Xeon(R) CPU   ...

  10. HBase Compaction详解

    HBase Compaction策略 RegionServer这种类LSM存储引擎需要不断的进行Compaction来减少磁盘上数据文件的个数和删除无用的数据从而保证读性能. RegionServer ...

随机推荐

  1. vue指令之属性指令

    目录 属性指令 示例 属性指令 标签上的属性可以绑定变量,变量变化,属性也会变化 # 什么是属性?比如: href/src/name/value/class/style... 语法: v-bind:属 ...

  2. 近万字总结:Java8 Stream流式处理指南

    总结/朱季谦 在实际项目当中,若能熟练使用Java8 的Stream流特性进行开发,就比较容易写出简洁优雅的代码.目前市面上很多开源框架,如Mybatis- Plus.kafka Streams以及F ...

  3. Gpssworld仿真(二):并排排队系统模拟

    4.3 某一个加油站能够配给三个级别的燃油:①家庭取暖用的燃油:②轻工业用的燃油:③运输用的燃油.每一级别的燃油都有一个对应的油泵.订单中燃油的数量在3000加仑和5000加仑中变化,每次增加10加仑 ...

  4. SpringBoot线程池和Java线程池的实现原理

    使用默认的线程池 方式一:通过@Async注解调用 public class AsyncTest { @Async public void async(String name) throws Inte ...

  5. 介绍ServiceSelf项目

    ServiceSelf 做过服务进程功能的同学应该接触过Topshelf这个项目,它在.netframework年代神一搬的存在,我也特别喜欢它.遗憾的是在.netcore时代,这个项目对.netco ...

  6. React Native 开发环境搭建——nodejs安装、yarn安装、JDK安装多个版本、安装Android Studio、配置Android SDK的环境变量

    一.React Native介绍 二.开发环境的搭建 2.1.Node.js安装 Node.js要求14版或更新 https://nodejs.org/en 查看版本: 2.2.yarn安装 Yarn ...

  7. MySQL-InnoDB磁盘结构

    主要阐述InnoDB存储引擎(MySQL5以后的默认引擎). 数据库中最基本的组成结构是数据表,视觉上的表和其对应的磁盘结构如下: 此图参考了厦门大学课堂:MySQL原理 .但是视频中一些更多细节没有 ...

  8. 安装kafka和zookeeper以及使用

    1.安装zookeeper zookeeper下载:http://zookeeper.apache.org/releases.html 从3.5.5开始,带有bin名称的包才是要下载的包可以直接使用 ...

  9. Sentinel为什么这么强,我扒了扒背后的实现原理

    大家好,我是三友~~ 最近我在整理代码仓库的时候突然发现了被尘封了接近两年之久的Sentinel源码库 两年前我出于好奇心扒了一下Sentinel的源码,但是由于Sentinel本身源码并不复杂,在简 ...

  10. 关于聚合根,领域事件的那点事---深入浅出理解DDD

    作者:京东物流 赵勇萍 前言 最近有空会跟同事讨论DDD架构的实践落地的情况,但真实情况是,实际中对于领域驱动设计中的实体,值对象,聚合根,领域事件这些战术类的实践落地,每个人理解依然因人而异,大概率 ...