阿里的FunAsr对Whisper中文领域的转写能力造成了一定的挑战,但实际上,Whisper的使用者完全可以针对中文的语音做一些优化的措施,换句话说,Whisper的“默认”形态可能在中文领域斗不过FunAsr,但是经过中文特殊优化的Whisper就未必了。

中文文本标注优化

Whisper经常被人诟病的一点是对中文语音转写后标点符号的支持不够完备。首先安装whisper:

pip install -U openai-whisper

编写转写脚本:

import whisper
device = "cuda:0" if torch.cuda.is_available() else "cpu"
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio) model = whisper.load_model("large-v2",download_root="./whisper_model/") mel = whisper.log_mel_spectrogram(audio).to(model.device) options = whisper.DecodingOptions(beam_size=5) result = whisper.decode(model, mel, options)
print(result.text)

程序返回:

Erwin_0.wav|Erwin|ZH|如果这个作战顺利。
Erwin_1.wav|Erwin|ZH|你也许可以趁此机会干掉狩之巨人
Erwin_10.wav|Erwin|ZH|如果到時候我不衝在最前面
Erwin_11.wav|Erwin|ZH|他们根本不会往前冲然后我会第一个去死
Erwin_12.wav|Erwin|ZH|地下室里到底有什么
Erwin_13.wav|Erwin|ZH|也就无从知晓了好想去地下室看一看我之所以能撑着走到今天
Erwin_14.wav|Erwin|ZH|就是因为相信这一天的到来。
Erwin_15.wav|Erwin|ZH|因为艰辛着
Erwin_16.wav|Erwin|ZH|我才想能够得到证实
Erwin_17.wav|Erwin|ZH|我之前無數次的想過,要不然乾脆死了算了。
Erwin_18.wav|Erwin|ZH|可即便如此,我還是想要實現父親的夢想。
Erwin_19.wav|Erwin|ZH|然而现在
Erwin_2.wav|Erwin|ZH|但得拿所有新兵不管選擇哪條路
Erwin_20.wav|Erwin|ZH|她的答案就在我触手可及的地方
Erwin_21.wav|Erwin|ZH|仅在咫尺死去的同伴们也是如此吗
Erwin_22.wav|Erwin|ZH|那些流血的棲身,都是沒有意義的嗎?
Erwin_23.wav|Erwin|ZH|不!不對!
Erwin_24.wav|Erwin|ZH|那些死去士兵的意义将由我们来赋予
Erwin_25.wav|Erwin|ZH|那些勇敢的死者可憐的死者
Erwin_26.wav|Erwin|ZH|是他们的牺牲换来了我们活着的今天
Erwin_27.wav|Erwin|ZH|让我们能站在这里否则今天我们将会死去
Erwin_28.wav|Erwin|ZH|将依依托福给下一个活着的人
Erwin_29.wav|Erwin|ZH|这就是我们与这个残酷的世界
Erwin_3.wav|Erwin|ZH|我们基本都会死吧是的全灭的可能性相当的高
Erwin_30.wav|Erwin|ZH|抗爭的意義
Erwin_4.wav|Erwin|ZH|但事到如今,也只能做好玉石俱焚的觉悟。
Erwin_5.wav|Erwin|ZH|將一切賭在獲勝渺茫的戰術上
Erwin_6.wav|Erwin|ZH|到了这一步
Erwin_7.wav|Erwin|ZH|要让那些年轻人们去死
Erwin_8.wav|Erwin|ZH|就必须像一个一流的诈骗犯一样
Erwin_9.wav|Erwin|ZH|对他们花言巧语一番

可以看到,除了语气特别强烈的素材,大部分都没有进行标点符号的标注。

但事实上,Whisper完全可以针对中文进行标注,只需要添加对应的引导词:

options = whisper.DecodingOptions(beam_size=5,prompt="生于忧患,死于欢乐。不亦快哉!")

这里通过prompt对其进行引导,通过逗号、句号以及感叹号对文本标注,引导后的效果:

Erwin_0.wav|Erwin|ZH|如果这个作战顺利。
Erwin_1.wav|Erwin|ZH|你也许可以趁此机会干掉受之虚人。
Erwin_10.wav|Erwin|ZH|如果到时候我不冲在最前面
Erwin_11.wav|Erwin|ZH|他们根本不会往前冲,然后我会第一个去死。
Erwin_12.wav|Erwin|ZH|地下室里到底有什么?
Erwin_13.wav|Erwin|ZH|好想去地下室看一看,我之所以能撑着走到今天。
Erwin_14.wav|Erwin|ZH|就是因为相信这一天的到来。
Erwin_15.wav|Erwin|ZH|因为艰辛着D
Erwin_16.wav|Erwin|ZH|我的猜想能够得到证实。
Erwin_17.wav|Erwin|ZH|我之前无数次地想过,要不然干脆死了算了。
Erwin_18.wav|Erwin|ZH|可即便如此,我还是想要实现父亲的梦想。
Erwin_19.wav|Erwin|ZH|然而现在
Erwin_2.wav|Erwin|ZH|但得拿所有新兵,不管选择哪条路。
Erwin_20.wav|Erwin|ZH|他的答案就在我触手可及的地方。
Erwin_21.wav|Erwin|ZH|竟在咫尺。死去的同伴们也是如此吗?
Erwin_22.wav|Erwin|ZH|那些流血的牺牲,都是没有意义的吗?
Erwin_23.wav|Erwin|ZH|不!不对!
Erwin_24.wav|Erwin|ZH|那些死去士兵的意义将由我们来赋予!
Erwin_25.wav|Erwin|ZH|那些勇敢的死者,可怜的死者!
Erwin_26.wav|Erwin|ZH|是他们的牺牲换来了我们活着的今天!
Erwin_27.wav|Erwin|ZH|让我们能站在这里,而今天我们将会死去!
Erwin_28.wav|Erwin|ZH|将依依托福给下一个活着的人!
Erwin_29.wav|Erwin|ZH|这就是我们与这个残酷的世界。
Erwin_3.wav|Erwin|ZH|是的,全灭的可能性相当的高。
Erwin_30.wav|Erwin|ZH|抗争的意义!
Erwin_4.wav|Erwin|ZH|但事到如今,也只能做好玉石俱焚的觉悟。
Erwin_5.wav|Erwin|ZH|将一切赌在获胜渺茫的战术上。
Erwin_6.wav|Erwin|ZH|到了这一步
Erwin_7.wav|Erwin|ZH|要让那些年轻人们去死。
Erwin_8.wav|Erwin|ZH|就必须像一个一流的诈骗犯一样。
Erwin_9.wav|Erwin|ZH|对他们花言巧语一番。

通过transformers来调用中文模型

transformers是一个用于自然语言处理(NLP)的开源库,由Hugging Face开发和维护。它提供了各种预训练的模型,包括文本生成、文本分类、命名实体识别等多种NLP任务的模型。transformers库基于Transformer模型架构,这是一种用于处理序列数据的深度学习模型。Transformer模型在NLP领域取得了巨大成功,因为它能够处理长距离依赖关系,并且在各种NLP任务上取得了优异的性能。

使用transformers库,开发人员可以轻松地访问和使用各种预训练的NLP模型,也可以使用该库进行模型的微调和训练。transformers库支持多种主流深度学习框架,包括PyTorch和TensorFlow。

首先安装transformers:

pip install -U transformers

编写转写代码:

from transformers import pipeline  

device = "cuda:0" if torch.cuda.is_available() else "cpu"  

def transcribe_bela(audio_path):  

    transcriber = pipeline(
"automatic-speech-recognition",
model="BELLE-2/Belle-whisper-large-v2-zh",
device=device
) transcriber.model.config.forced_decoder_ids = (
transcriber.tokenizer.get_decoder_prompt_ids(
language="zh",
task="transcribe",
)
) transcription = transcriber(audio_path) print(transcription["text"])
return transcription["text"]

这里通过BELLE-2/Belle-whisper-large-v2-zh模型来进行转写,提高中文的识别准确度和效率。

这个模型是在whisper的large-v2模型上针对中文进行了微调,以增强中文语音识别能力, Belle-whisper-large-v2-zh 在中国 ASR 基准测试(包括 AISHELL1、AISHELL2、WENETSPEECH 和 HKUST)上表现出 30-70% 的相对改进。

该模型的官方地址:

https://huggingface.co/BELLE-2/Belle-whisper-large-v2-zh

当然,也不是没有缺陷,BELLE-2模型目前基于AISHELL、WENETSPEECH等数据做的微调,弱化了标点能力。

换句话说,没法通过引导词来打标,但其实也有其他解决方案,即可以基于标点模型 对转写文本加标点。比如这个方案:

https://modelscope.cn/models/damo/punc_ct-transformer_cn-en-common-vocab471067-large/summary

BELLE-2模型的作者相当热心,有问必答,这是笔者对其模型提的Issues:

https://github.com/LianjiaTech/BELLE/issues/571

现在该模型的瓶颈是,如果微调带标点的中文数据,这块开源数据相对比较少,无法进行有效的训练。

除了大模型的中文优化版本,也有针对small模型的中文优化版本:

https://huggingface.co/Jingmiao/whisper-small-chinese_base

结语

Whisper开源模型通过transformers的微调,可以将预训练模型应用于特定的中文NLP任务,从而提高模型在该任务上的性能。微调使模型能够学习适应特定任务的特征和模式,从而实现更好的效果。

Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10)的更多相关文章

  1. 基于深度学习的中文语音识别系统框架(pluse)

    目录 声学模型 GRU-CTC DFCNN DFSMN 语言模型 n-gram CBHG 数据集 本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字. 声学模型 ...

  2. GRU-CTC中文语音识别

    目录 基于keras的中文语音识别 音频文件特征提取 文本数据处理 数据格式处理 构建模型 模型训练及解码 aishell数据转化 该项目github地址 基于keras的中文语音识别 该项目实现了G ...

  3. 使用 WinEdt 来写中文文章or 建模论文

    找了几乎两个小时…… 后来发现… WinEdt 是可以用来写中文文章的…而并非只能英文文章或演示文稿… \documentclass{article} \usepackage{CJK} \begin{ ...

  4. 解决python中write()函数向文件中写中文时出现乱码的问题

    今天看<python编程从入门到实践>的第10章文件.异常,在做练习的时候,向文件中写内容,但是写中文就不行,后来在百度上查了众多资料,解决方法如下: 解决:在open()函数中添加一个e ...

  5. 用LyX写中文幻灯片

    虽然在虚拟机装了texlive以备使用,但是在不动CTeX的情况下,是否能使用LyX写中文幻灯片呢.网上只是寥寥几篇大神们在Linux用LyX的博文. 最近把论文交完写幻灯片,于是也把这个想法尝试了一 ...

  6. python 在图像上写中文字体 (python write Chinese in image)

    本人处理图像的时候经常使用opencv的包,但是 cv2.putText 显示不了中文,所以查找了如何在python在图像上写中文的方法,在伟大的Stack Overflow上面找到一个方法,分享给大 ...

  7. python使用vosk进行中文语音识别

    操作系统:Windows10 Python版本:3.9.2 vosk是一个离线开源语音识别工具,它可以识别16种语言,包括中文. 这里记录下使用vosk进行中文识别的过程,以便后续查阅. vosk地址 ...

  8. 速成KeePass全局自动填表登录QQ与迅雷(包括中文输入法状态时用中文用户名一键登录)

    原文:http://bbs.kafan.cn/thread-1637531-1-1.html 使用目的:1 网页和本地客户端登录一站式解决2 通过KeePss修改密码和登录更方便,可以复制粘贴,省了输 ...

  9. 读取 properties 配置文件含有中文的value内容 导致中文乱码 的解决办法

    1.前言 因为装系统的时候把中文写在了系统路径,现在我想把这个路径写在properties里面来读取,可是 发现java 读取会导致中文乱码成 问号????的乱码  ,百度找了好多博客,基本都是一摸一 ...

  10. Windows server 2012 添加中文语言包(英文转为中文)(离线)

    Windows server 2012 添加中文语言包(英文转为中文)(离线) 相关资料: 公司环境:亚马孙aws虚拟机 英文版Windows2012 中文SQL Server2012安装包,需要安装 ...

随机推荐

  1. 让数据大白于天下:GCC插件实现代码分析和安全审计

    摘要: 如何利用GCC的插件功能,辅助安全分析人员实现对程序的安全审计.漏洞检测.安全加固等自动化处理能力,提升分析效率和精准度. 本文分享自华为云社区<利用GCC插件实现代码分析和安全审计&g ...

  2. 火山引擎 DataLeap 助你拥有 Notebook 交互式的开发体验

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群   Notebook 是一种支持 REPL 模式的开发环境.所谓「REPL」,即「读取-求值-输出」循环:输入一段 ...

  3. 火山引擎 DataTester:0 代码也能实施 A/B 测试的实验平台

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 近日,火山引擎 DataTester 对 A/B 实验"可视化编辑器"进行了升级,可视化编辑器功能让用 ...

  4. Sublime Text Python 代码提示插件 Anaconda

    1.Ctrl+Shift+P -> install package 安装 Anaconda 查看Python 安装路径 { "python_interpreter":&quo ...

  5. c#-微软

    1)使用c#编写第一个程序简介: c#编程语言允许你构建多种类型的应用程序,例如: 用于捕获,分析和处理数据的业务应用程序 可从Web浏览器访问的动态Web应用程序 2D和3D游戏 金融和科研应用程序 ...

  6. Win10中docker的安装与使用

    1.docker的安装 环境准备 Docker for Windows是一个Docker Community Edition(CE)应用程序.Docker for Windows安装包包含了在Wind ...

  7. 从“预见”到“遇见”SAE 引领应用步入 Serverless 全托管新时代

    --黛忻 阿里云SAE产品经理 近年来,企业的数字化随着互联网的普及发展越来越快,技术架构也是几经更迭,尤其是在线业务部分.从最初的单体应用到分布式应用再到云原生应用,出现了进阶式的变化. 带来便利的 ...

  8. vue 路由跳转页面不刷新

    vue 路由跳转页面不刷新 点击打开视频讲解地址在router-view 里边添加 :key="$route.fullPath"

  9. CSS Sticky Footer 几种实现方式

    项目里,有个需求,登录页,信息,需要使用到sticky footer布局,刚好,巩固下这个技术: 核心代码: 播客: https://www.jb51.net/css/676798.html 视频:h ...

  10. distributor和gateway联合实现出中继的负载均衡+故障转移

    概述 freeswitch是一款简单好用的VOIP开源软交换平台. 在之前的文章,我们介绍过distributor模块实现多线路分发的配置方法,但是当线路发生故障时,distributor并不会自动跳 ...