常见距离计算的Python实现
常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。
1.曼哈顿距离
也叫城市街区距离,是两点差向量的L1范数,也就是各元素的绝对值之和。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的曼哈顿距离表示为
\]
Python实现:
import numpy as np
from scipy.spatial import distance
A = np.array([1,2,3])
B = np.array([4,5,6])
# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))
# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1) #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数),默认2。
# 方式三:scipy库计算
dist3 = distance.cityblock(A,B)
2.欧式距离
是一种最常见的距离,也就是两点差向量的L2范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的欧式距离表示为
\]
Python实现:
import numpy as np
from scipy.spatial import distance
A = np.array([1,2,3])
B = np.array([4,5,6])
# 方式一:直接构造公式计算
dist1 = np.sqrt(np.sum((A-B)**2))
# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=2)
# 方式三:scipy库计算
dist3 = distance.euclidean(A,B)
3.切比雪夫距离
最大的维度内距离,是两点差向量的无穷范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的切比雪夫距离表示为
\]
Python实现:
import numpy as np
from scipy.spatial import distance
A = np.array([1,2,3])
B = np.array([4,5,6])
# 方式一:直接构造公式计算
dist1 = np.max(np.abs(A-B))
# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=np.inf)
# 方式三:scipy库计算
dist3 = distance.chebyshev(A,B)
4. 闵可夫斯基距离
是一种范式距离的统称,可表示为两点差向量的Lp范数。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的闵可夫斯基距离表示为
\]
Python实现:
import numpy as np
from scipy.spatial import distance
A = np.array([1,2,3])
B = np.array([4,5,6])
# 方式一:内置线性代数函数计算
dist1 = np.linalg.norm(A-B,ord=3) # np.linalg.norm(A-B,ord=p)
# 方式二:scipy库计算
dist2 = distance.minkowski(A,B,3) # distance.minkowski(A,B,p)
5.汉明距离
衡量两个字符串之间的差异程度,对两个对象的向量元素逐个比较,差异的个数占总个数的比例。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的汉明距离表示为
\]
其中I为指示函数,
\]
Python实现:
import numpy as np
from scipy.spatial import distance
A = np.array([1,2,3])
B = np.array([4,5,6])
# 方式一:scipy库计算
dist1 = distance.hamming(A,B)
6.余弦距离
也叫余弦相似度,是两点空间向量夹角的余弦值,是内积与模积的比值,用来衡量两向量间的差异程度。A(x1,x2,…,xn)和B(y1,y2,…,yn)之间的余弦距离表示为
d&=cos\theta=\frac{<A,B>}{\left| A \right|\cdot\left| B \right|} \\
&=\frac{\sum_{i=1}^{n}{x_iy_i}}{\sqrt{\sum_{i=1}^{n}{x_i^{2}}}\cdot\sqrt{\sum_{i=1}^{n}{y_i^{2}}}}
\end{align}\]
Python实现:
import numpy as np
from scipy.spatial import distance
A = np.array([1,2,3])
B = np.array([4,5,6])
# 方式一:直接构造公式计算
dist1 = np.sum(A*B)/(np.sqrt(np.sum(A**2))*np.sqrt(np.sum(B**2)))
# 方式二:scipy库计算
dist2 = 1-distance.cosine(A,B)
End.
常见距离计算的Python实现的更多相关文章
- [转] MachingLearning中的距离相似性计算以及python实现
参考:https://blog.csdn.net/gamer_gyt/article/details/75165842#t16 https://blog.csdn.net/ymlgrss/artic ...
- 【Python学习】指定两点地理位置经纬度的距离计算
指定两点地理位置经纬度的距离计算 #coding=utf-8 from math import * # input Lat_A 纬度A # input Lng_A 经度A # input Lat_B ...
- 相似度与距离计算python代码实现
#定义几种距离计算函数 #更高效的方式为把得分向量化之后使用scipy中定义的distance方法 from math import sqrt def euclidean_dis(rating1, r ...
- Python地理位置信息库geopy的使用(二):根据中心点坐标,方向,距离计算坐标
上一篇文章我们介绍了geopy的基本使用,这一篇文章我们根据中心点坐标,方向,距中心点距离计算出对应的坐标点,这种用法官网并没有给出详细的文档,我们这里做一下说明 生成坐标点的具体方法 import ...
- 概率分布之间的距离度量以及python实现(四)
1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间 ...
- Scipy教程 - 距离计算库scipy.spatial.distance
http://blog.csdn.net/pipisorry/article/details/48814183 在scipy.spatial中最重要的模块应该就是距离计算模块distance了. fr ...
- 距离度量以及python实现(一)
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间 ...
- 概率分布之间的距离度量以及python实现
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧 ...
- Anaconda 用于科学计算的 Python 发行版
用于科学计算的 Python 发行版: 1.Anaconda https://www.continuum.io/ 公司continuum. 有商业版本. Anaconda is the le ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 拥挤距离计算 crowddist.c
/* Crowding distance computation routines */ # include <stdio.h> # include <stdlib.h> # ...
随机推荐
- hibernate4升级5带来的一些参数变化
public String hqlToHibernate5(String hql) { String[] tmp = hql.split(" "); String hqlTmp = ...
- HarmonyOS NEXT应用开发案例—使用弹簧曲线实现抖动动画及手机振动效果案例
介绍 本示例介绍使用vibrator.startVibration方法实现手机振动效果,用animateTo显示动画实现点击后的抖动动画. 效果图预览 使用说明 加载完成后显示登录界面,未勾选协议时点 ...
- 动态尺寸模型优化实践之Shape Constraint IR Part II
简介: 在本系列分享中我们将介绍BladeDISC在动态shape语义下做性能优化的一些实践和思考.本次分享的是我们最近开展的有关shape constraint IR的工作,Part II 中我们将 ...
- KubeDL HostNetwork:加速分布式训练通信效率
简介:ubeDL 为分布式训练作业带来了 HostNetwork 网络模式,支持计算节点之间通过宿主机网络相互通信以提升网络性能,同时适应 RDMA/SCC 等新型高性能数据中心架构的网络环境,此外 ...
- 多任务多目标CTR预估技术
简介: 多目标(Multi Objective Learning)是MTL中的一种.在业务场景中,经常面临既要又要的多目标问题.而多个目标常常会有冲突.如何使多个目标同时得到提升,是多任务多目标在真 ...
- Git 工具下载慢问题 & 图像化界面工具
Git 命令行淘宝镜像:git-for-windows Mirror (taobao.org) Git 图形客户端:Download – TortoiseGit – Windows Shell Int ...
- [FAQ] Golang error strings should not be capitalized or end with punctuation
当我们在 Golang 中使用 errors.New("Aaa.") 形式返回 error 信息时,文字内容不应该以大写字母开头或者标点符号结尾. 所以这样是可以的 errors. ...
- WinDbg 设置在加载到某个 DLL 进入断点
本文记录如何在 WinDbg 里,设置在加载到某个 DLL 时,自动进入断点.通过此方式用来定位是哪个业务模块加载了某个 DLL 模块 在 WinDbg 里面,可以附加到现有进程,也可以启动某个进程. ...
- WPF dotnet 6 开启 PM v2 的 DPI 感知 导致触摸线程访问 UI 属性抛异常
本文记录一个 WPF 在 dotnet 6 的一个已知问题,且此问题我已修复提交给官方仓库.这是一个只有在 dotnet 6 框架下,非 dotnet 5 也非 .NET Core 3.1 也非 .N ...
- dotnet 构建还原失败 NuGet.targets 错误可能原因
我在一次断电关机之后,发现我所有的项目都构建不通过了,提示在 NuGet.targets 文件的第 130 行错误.原因就是存在有某个被项目引用的 NuGet 包被损坏,在进行 NuGet 还原时读取 ...