线性dp:最长公共子序列
最长公共子序列
- 本文讲解的题与leetcode1143.最长公共子序列这题一样,阅读完可以挑战一下。
题目叙述:
给定两个字符串,输出其最长公共子序列,并输出它的长度
输入:
ADABEC和DBDCA
输出:
DBC
3
解释
最长公共子序列是DBC,其长度为3
动态规划思路:
- 我们这题先构建一个模型,我们使用两个指针
i
,j
,分别用于遍历a字符串,b字符串。如图所示:
然后我们可以设想一个状态变量,也就是一个函数。一个关于两个变量相关的函数,这在代码中体现为二维数组
f
。然后
f[i][j]
表示什么呢?表示序列a[1,2,3....i]
和b[1,2,3....j]
的最长公共子序列的长度
状态变量的含义
在这里的状态变量为
f[i][j]
,它的含义是a的前i个字符与b的前j个字符的最长公共子序列的长度现在就要观察
a[i]
,b[j]
是否在当前的最长公共子序列当中。具体情况如下图:
递推公式:
f[i][j]
可以分为三种情况讨论,就是:
a[i]
,b[j]
都在最长公共子序列当中,也就是a[i]==b[j]
a[i]!=b[j]
,并且a[i]
不在公共子序列当中。a[i]!=b[j]
,并且b[j]
不在公共子序列当中。
- 那我们的递推公式就可与分为两种情况:
f[i][j]=f[i-1][j-1]+1
(a[i]==b[j]
)f[i][j]=max(f[i-1][j],f[i][j-1])
(a[i]!=b[j]
)
- 显而易见,我们的边界条件为:
f[0][j]=0
f[i][0]=0
//m是a字符串的长度,n是b字符串的长度
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
//因为我们的f数组是从下标1开始,而字符串是从0开始的下标
if(a[i-1]==b[j-1]) f[i][j]=f[i-1][j-1]+1;
else f[i][j]=max(f[i-1][j],f[i][j-1]);
}
}
遍历顺序
- 经过上面的分析,明显遍历顺序为
i从小到大
,j也是从小到大
。
初始化
- 初始化边界为0即可
举例打印dp数组
- 如图所示
如何找出对应的最长公共子序列的长度
我们使用p数组来记录每一次
f[i][j]
的值来源于哪一个方向- 1方向代表左上方
- 2方向代表左方
- 3方向代表上方
代码改造如下:
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(a[i-1]==b[j-1]){
f[i][j]=f[i-1][j-1]+1;
//左上方
p[i][j]=1;
}
else if(f[i-1][j]>f[i][j-1]){
f[i][j]=f[i][j-1];
//左边
p[i][j]=2;
}
else{
f[i][j]=f[i-1][j];
//上边
p[i][j]=3;
}
}
}
p[i][j]
代表前驱的位置。
算法的执行过程
- 我们要找到最长公共子序列,只需要找到从结尾开始,往前找到
p[i][j]==1
,也就是来源于左上方的哪些元素的集合,就是我们的最长公共子序列。(并不是棋盘中所有p[i][j]==1
)的元素,而是从右下角出发,往回找到的所有p[i][j]==1
的那些元素。 - 例子如下:
我们使用
s数组
来储存最长公共子序列代码实现:
int i,j,k;
char s[200];
i=m;j=n;k=f[m][n];
while(i>0&&j>0){
//左上方
if(p[i][j]==1){
s[k--]=a[i-1];
i--;j--;
}
//左边
else if(p[i][j]==2) j--;
//上边
else i--;
}
for(int i=1;i<=f[m][n];i++) cout<<s[i];
最终代码实现:
#include <iostream>
#include <cstring>
using namespace std;
char a[200];
char b[200];
int f[205][205];
int p[205][205];
int m, n;
void LCS() {
int i, j;
m = strlen(a);
n = strlen(b);
for (i = 1; i <= m; i++) {
for (j = 1; j <= n; j++) {
if (a[i - 1] == b[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
p[i][j] = 1;
}
else if (f[i - 1][j] > f[i][j - 1]) {
f[i][j] = f[i - 1][j];
p[i][j] = 2;
}
else {
f[i][j] = f[i][j - 1];
p[i][j] = 3;
}
}
}
cout << f[m][n] << endl;
}
//寻找出当初的最长公共子序列。
void getLCS() {
int i = m, j = n, k = f[m][n];
char s[200];
s[k] = '\0';
while (i > 0 && j > 0) {
if (p[i][j] == 1) {
s[--k] = a[i - 1];
i--; j--;
}
else if (p[i][j] == 2) {
i--;
}
else {
j--;
}
}
cout << s << endl;
}
int main() {
cin >> a >> b;
LCS();
getLCS();
return 0;
}
线性dp:最长公共子序列的更多相关文章
- hdu1159 dp(最长公共子序列)
题意:给两个字符串,求这两个字符串的最长公共子序列的长度 因为之前集训的时候做过,所以现在即使会做也并不是什么稀奇的事,依旧为了自己的浅薄感到羞愧啊``` 解法就是通过两个字符串的每个字符互相比较,根 ...
- POJ 1159 Palindrome(区间DP/最长公共子序列+滚动数组)
Palindrome Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 56150 Accepted: 19398 Desc ...
- poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)
Palindrome Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 53414 Accepted: 18449 Desc ...
- 经典dp 最长公共子序列
首先,说明一下子序列的定义…… 一个序列A={a1,a2,a3,...,an},从中删除任意若干项,剩余的序列叫A的一个子序列. 很明显(并不明显……),子序列……并不需要元素是连续的……(一开始的时 ...
- HDU 1159 Common Subsequence【dp+最长公共子序列】
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- POJ - 1458 Common Subsequence DP最长公共子序列(LCS)
Common Subsequence A subsequence of a given sequence is the given sequence with some elements (possi ...
- hdu 1503:Advanced Fruits(动态规划 DP & 最长公共子序列(LCS)问题升级版)
Advanced Fruits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- POJ1458 Common Subsequence —— DP 最长公共子序列(LCS)
题目链接:http://poj.org/problem?id=1458 Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Tot ...
- 51nod 1183 编辑距离【线性dp+类似最长公共子序列】
1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...
- 1. 线性DP 1143. 最长公共子序列
最经典双串: 1143. 最长公共子序列 (LCS) https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...
随机推荐
- P2045 方格取数加强版题解
题目链接:P2045 方格取数加强版 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目: 出一个 n*n 的矩阵,每一格有一个非负整数 A{i,j}且A{i,j} <=10 ...
- 转: fastapi https 配置
python3 快速生成 https 所需证书 from OpenSSL import crypto, SSL def generate_certificate( organization=&qu ...
- 汇编语言--cpu的工作原理(寄存器)--手稿
03
- Mybatis-Plus最优化持久层开发
Mybatis-plus:最优化持久层开发 一:Mybatis-plus快速入门: 1.1:简介: Mybatis-plus(简称MP)是一个Mybatis的增强工具,在mybatis的基础上只做增强 ...
- Git 清除缓存账密
[已解决] git push 报错:git: 'credential-manager' is not a git command. See 'git --help'. 解决方案1)运行 git con ...
- [oeasy]python0108_谷腾堡活字_哥特字体_罗马帝国_希腊文化_文艺复兴
谷腾堡活字 回忆上次内容 上次回顾了字型编码的进化过程 7-seg 七位数码管 显示数字 14-seg 十四位数码管 显示字母 添加图片注释,不超过 140 字(可选) 米字管 ...
- Django 自定义装饰器解决MySQL server has gone away错误
Django 自定义装饰器解决MySQL server has gone away错误 by:授客 QQ:1033553122 测试环境 Win 10 Python 3.5.4 Django- ...
- 【AppStore】IOS应用上架Appstore的一些小坑
前言 上一篇文章写到如何上架IOS应用到Appstore,其中漏掉了些许期间遇到的小坑,现在补上 审核不通过原因 5.1.1 Guideline 5.1.1 - Legal - Privacy - D ...
- 测试开发jmeter设置线程序号
测试开发jmeter设置线程序号 ${__threadNum} 需要在请求的名称后面加上${__threadNum} 然后运行结果如下:
- .NET8 Blazor 从入门到精通:(一)关键概念
目录 Blazor 的关键概念 项目模板 Razor 语法 依赖注入 注入配置 HeadOutlet 组件 @code 分离 Blazor 调试 CSS 隔离 调用JavaScript 最近在学习 B ...