摘要:本文解读了《TransFG: A Transformer Architecture for Fine-grained Recognition》,该论文针对细粒度分类任务,提出了对应的TransFG。

本文分享自华为云社区《论文解读系列二十:用于细粒度分类的Transformer结构—TransFG》,作者: BigDragon 。

论文地址:https://arxiv.org/abs/2103.07976

GitHub地址:https://github.com/TACJu/TransFG

近来,细粒度分类研究工作主要集中在如何定位差异性图片区域,以此提高网络捕捉微小差异的能力,而大部分工作主要通过使用不同的基模型来提取特定区域的特征,但这种方式会使流程复杂化,并从特定区域提取出大量冗余特征。因此,本文将所有原始注意力权重整合至注意力映射中,以此来指导模型高效地选取差异性图片区域,提出用于细粒度分类的Transformer结构TransFG。

图1 TransFG 结构

1 问题定义

细粒度分类任务主要以定位方法及特征编码方法为主,定位方法主要通过定位差异性局部区域来进行分类,而特征编码方法通过高维信息或寻找差异对之间关系来学习更多信息。TransFG通过整合注意力权重,计算区域的对比损失,来定位差异性局部区域,以此进行细粒度分类。

2 TransFG

2.1 图像序列化

原有Vision Transformer将图片分割为相互不重叠的patch,但这会损害局部相邻结构,可能会导致差异性图像区域被分离。因此,为解决这个问题,本文采用滑动窗口产生重叠patch,所产生的patch数量N根据公式(1)进行计算。其中,H、W分别为图像长宽,P为图像patch尺寸,S为滑动窗口步长。

2.2 Patch Embedding 和 Transformer Encoder

TransFG在Patch Embedding 和 Transformer Encoder两个模块遵循了原有ViT的形式,并未进行改动

2.3 局部选取模块(PSM)

图2 TransFG的注意力映射及所选取的token

首先假设模型中具有K个自注意首部,各层注意力权重如公式(2)所示,其中al指第l层K个首部注意力权重。

如公式(3)所示,将所有层的注意力权重进行矩阵相乘,afinal 捕捉了图像信息从输入到更深层的整个过程,相对于原有ViT,包含了更多信息,更加有助于选取具有识别性的区域

选取afinal中K个不同注意力首部的最大值A1、A2、…、AK,并将其与分类token进行拼接,其结果如公式(4)所示。该步骤不仅保留了全局信息,也让模型更加关注与不同类别之间的微小差异。

2.4 对比损失

如公式(5)所示,对比损失的目标是最小化不同类别对应的分类tokens的相似度,并最大化相同类别对应的分类tokens的相似度。其中,为减少loss被简单负样本影响,采用α来控制对loss有贡献的负样本对。

3 实验结果

TranFG在CUB-200-2011、Stanford Cars、Stanford Dogs、NABirds及iNat2017五个数据集进行了验证,并在CUB-200-2011、Standford Dogs、NABirds数据集上取得了SOTA结果。

4. 总结

  • 在图像序列化部分,相对于采用非重叠的patch分割方法,采用重叠方法的精度提高了0.2%
  • PSM整合所有注意力权重,保留全局信息,让模型更加关注于不同类别的微小差别,让模型精度提高了0.7%。
  • 采用对比损失函数,能减少不同类别的相似度,提高相同类别的相似度,让模型精度提高了0.4%-0.5%。

参考文献

[1] He, Ju, et al. "TransFG: A Transformer Architecture for Fine-grained Recognition." arXiv preprint arXiv:2103.07976 (2021).

想了解更多的AI技术干货,欢迎上华为云的AI专区,目前有AI编程Python等六大实战营供大家免费学习

点击关注,第一时间了解华为云新鲜技术~

带你读AI论文丨用于细粒度分类的Transformer结构—TransFG的更多相关文章

  1. 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU

    摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...

  2. 带你读AI论文丨ACGAN-动漫头像生成

    摘要:ACGAN-动漫头像生成是一个十分优秀的开源项目. 本文分享自华为云社区<[云驻共创]AI论文精读会:ACGAN-动漫头像生成>,作者:SpiderMan. 1.论文及算法介绍 1. ...

  3. 带你读AI论文丨S&P21 Survivalism: Living-Off-The-Land 经典离地攻击

    摘要:这篇文章属于系统分析类的文章,通过详细的实验分析了离地攻击(Living-Off-The-Land)的威胁性和流行度,包括APT攻击中的利用及示例代码论证. 本文分享自华为云社区<[论文阅 ...

  4. 带你读AI论文丨RAID2020 Cyber Threat Intelligence Modeling GCN

    摘要:本文提出了基于异构信息网络(HIN, Heterogeneous Information Network)的网络威胁情报框架--HINTI,旨在建模异构IOCs之间的相互依赖关系,以量化其相关性 ...

  5. 带你读AI论文丨LaneNet基于实体分割的端到端车道线检测

    摘要:LaneNet是一种端到端的车道线检测方法,包含 LanNet + H-Net 两个网络模型. 本文分享自华为云社区<[论文解读]LaneNet基于实体分割的端到端车道线检测>,作者 ...

  6. 带你读AI论文丨针对文字识别的多模态半监督方法

    摘要:本文提出了一种针对文字识别的多模态半监督方法,具体来说,作者首先使用teacher-student网络进行半监督学习,然后在视觉.语义以及视觉和语义的融合特征上,都进行了一致性约束. 本文分享自 ...

  7. 带你读AI论文:NDSS2020 UNICORN: Runtime Provenance-Based Detector

    摘要:这篇文章将详细介绍NDSS2020的<UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats& ...

  8. ACNet: 特别的想法,腾讯提出结合注意力卷积的二叉神经树进行细粒度分类 | CVPR 2020

    论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的 ...

  9. 【带你读论文】向量表征经典之DeepWalk

    摘要:详细讲解DeepWalk,通过随机游走的方式对网络化数据做一个表示学习,它是图神经网络的开山之作,借鉴了Word2vec的思想. 本文分享自华为云社区<[论文阅读] (25) 向量表征经典 ...

  10. 带你读Paper丨分析ViT尚存问题和相对应的解决方案

    摘要:针对ViT现状,分析ViT尚存问题和相对应的解决方案,和相关论文idea汇总. 本文分享自华为云社区<[ViT]目前Vision Transformer遇到的问题和克服方法的相关论文汇总& ...

随机推荐

  1. QT(1)- QString

    QT(1)- QString 1 简介 在Qt中表示字符串的类是QString类,它存储字符串是采用的Unicode码,编码方式是使用UTF-16来进行编码的,也就是一个字符(两个字节),一个中文汉字 ...

  2. Java 中 field 和 variable 区别及相关术语解释(转)

    https://www.jianshu.com/p/08e2d85d3ce9 这是一个以前从没仔细想过的问题--最近在阅读Java Puzzlers,发现其大量使用了"域"这个词, ...

  3. DDD技术方案落地实践

    1. 引言 从接触领域驱动设计的初学阶段,到实现一个旧系统改造到DDD模型,再到按DDD规范落地的3个的项目.对于领域驱动模型设计研发,从开始的各种疑惑到吸收各种先进的理念,目前在技术实施这一块已经基 ...

  4. 如何在Notepad++中轻松删除包含指定文本的字符串

    如果你需要在大量文本中删除指定模式的字符串,可以使用Notepad++中的正则表达式功能.下面是一个示例,让你可以快速学会如何删除包含指定文本的字符串.我们将使用以下示例字符串: This is a ...

  5. 深度解析NLP文本摘要技术:定义、应用与PyTorch实战

    在本文中,我们深入探讨了自然语言处理中的文本摘要技术,从其定义.发展历程,到其主要任务和各种类型的技术方法.文章详细解析了抽取式.生成式摘要,并为每种方法提供了PyTorch实现代码.最后,文章总结了 ...

  6. reverse_re3

    main函数 点击重要函数 对if里面的数字按r键,使其从ASCII码转为字符 发现wasd四个关键的移动方向键,判断为迷宫问题 判断应该是要次数为2,即次数++3(从0开始计数)次才会有flag 点 ...

  7. In 查询及其优化

      translator Afrikaans Albanian - shqipe Arabic - ‎‫العربية‬‎ Armenian - Հայերէն Azerbaijani - azərb ...

  8. 华为ar502H物联网边缘计算网关,在容器内控制/dev/do0开关命令

    执行以下命令进行开关do继电开关,可以听见电位器声音. echo -en  "\x01" > /dev/do0 echo -en  "\x00" > ...

  9. 【uniapp】学习笔记day02 | uniapp搭建

    起因:需要做一个小程序,家人们谁懂啊,老师我真的不会做,由于懒得看视频学习,于是只能看博客学习了. uniapp 好处: 1.不用关心适配问题 2.可以发布到各大平台的小程序 3.上手容易,使用vue ...

  10. Why Microservices ?

    微服务(Microservices)是一种软件架构设计风格,其中应用程序由一组小型.独立.自治的服务组成,这些服务共同工作以构建整体应用.每个服务都专注于一个特定的业务功能,可以独立部署.扩展和维护. ...