LightOJ 1085(树状数组+离散化+DP,线段树)
Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu
Description
An increasing subsequence from a sequence A1, A2 ... An is defined by Ai1, Ai2 ... Aik, where the following properties hold
- i1 < i2 < i3 < ... < ik and
- 2. Ai1 < Ai2 < Ai3 < ... < Aik
Now you are given a sequence, you have to find the number of all possible increasing subsequences.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case contains an integer n (1 ≤ n ≤ 105) denoting the number of elements in the initial sequence. The next line will contain n integers separated by spaces, denoting the elements of the sequence. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case of input, print the case number and the number of possible increasing subsequences modulo 1000000007.
Sample Input
3
3
1 1 2
5
1 2 1000 1000 1001
3
1 10 11
Sample Output
Case 1: 5
Case 2: 23
Case 3: 7
题解:让求单调递增序列的个数;dp[i]=sum(dp[j])+1(j<i);由于数太大,需要离散化由于是单调的,所以当相等的时候树状数组要从大到小inset,以免对后面相等的造成影响,还可以用线段树写;
树状数组:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
const int MOD=;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=1e5+;
int dp[MAXN],a[MAXN],p[MAXN];
int N;
int lowbit(int x){return x&(-x);}
void insert(int x,int v){
while(x<=N){
dp[x]=(dp[x]+v)%MOD;
x+=lowbit(x);
}
}
int sum(int x){
int ans=;
while(x>){
ans=(ans+dp[x])%MOD;
x-=lowbit(x);
}
return ans;
}
int cmp(int x,int y){
if(a[x]!=a[y])return a[x]<a[y];
else return x>y;
}
int main(){
int T,kase=;
SI(T);
while(T--){
SI(N);
for(int i=;i<=N;i++)SI(a[i]),p[i]=i;
sort(p+,p+N+,cmp);
mem(dp,);
for(int i=;i<=N;i++){
insert(p[i],sum(p[i])+);
}
printf("Case %d: %d\n",++kase,sum(N));
}
return ;
}
线段树:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define P_ printf(" ")
const int MOD=;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int MAXN=1e5+;
#define lson root<<1,l,mid
#define rson root<<1|1,mid+1,r
#define ll root<<1
#define rr root<<1|1
int tree[MAXN<<],p[MAXN],a[MAXN];
int ans=;
void pushup(int root){
tree[root]=(tree[ll]+tree[rr])%MOD;
}
void insert(int root,int l,int r,int flog,int v){
int mid=(l+r)>>;
if(l==flog&&r==flog){
tree[root]=v;
return;
}
if(mid>=flog)insert(lson,flog,v);
if(mid<flog)insert(rson,flog,v);
pushup(root);
}
void sum(int root,int l,int r,int L,int R){
int mid=(l+r)>>;
if(l>=L&&r<=R){
ans=(ans+tree[root])%MOD;
return;
}
if(mid>=L)sum(lson,L,R);
if(mid<R)sum(rson,L,R);
return;
}
int cmp(int x,int y){
if(a[x]!=a[y])return a[x]<a[y];
else return x>y;
}
int main(){
int T,N,kase=;
SI(T);
while(T--){
SI(N);
for(int i=;i<=N;i++)SI(a[i]),p[i]=i;
sort(p+,p+N+,cmp);
mem(tree,);
for(int i=;i<=N;i++){
ans=;
sum(,,N,,p[i]);
insert(,,N,p[i],ans+);
}
printf("Case %d: %d\n",++kase,tree[]);
}
return ;
}
LightOJ 1085(树状数组+离散化+DP,线段树)的更多相关文章
- [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)
这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...
- 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- bzoj4785:[ZJOI2017]树状数组:二维线段树
分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...
- HDU - 1166 树状数组模板(线段树也写了一遍)
题意: 汉语题就不说题意了,用到单点修改和区间查询(树状数组和线段树都可以) 思路: 树状数组的单点查询,单点修改和区间查询. 树状数组是巧妙运用二进制的规律建树,建树就相当于单点修改.这里面用到一个 ...
- BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 418 Solved: 235 [ Submit][ ...
- BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树
题目链接 BZOJ 4785 题解 这道题真是令人头秃 = = 可以看出题面中的九条可怜把求前缀和写成了求后缀和,然后他求的区间和却仍然是sum[r] ^ sum[l - 1],实际上求的是闭区间[l ...
- 2019.01.21 bzoj2441: [中山市选2011]小W的问题(树状数组+权值线段树)
传送门 数据结构优化计数菜题. 题意简述:给nnn个点问有多少个www型. www型的定义: 由5个不同的点组成,满足x1<x2<x3<x4<x5,x3>x1>x2 ...
- POJ 2299 【树状数组 离散化】
题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...
- HDU 4325 离散化+树状数组 或者 不使用树状数组
题意:给出一些花的开放时间段,然后询问某个时间点有几朵花正在开放. 由于ti<1e9,我们需要先将时间离散化,然后将时间点抽象为一个数组中的点,显然,我们需要进行区间更新和单点查询,可以考虑线段 ...
随机推荐
- QT多重继承的时候,要把QObject放在最前面,否则报错——C++认为人性本恶,默认都是私有的,这点和Delphi的世界观不一样
在买来的控件(没有源码)的基础上,想加入QObject的一些特性,不得不多继承: class MyProgress : public CProgress, public QObject 但总是报错: ...
- Delphi Windows API判断文件共享锁定状态(OpenFile和CreateFile两种方法)
一.概述 锁是操作系统为实现数据共享而提供的一种安全机制,它使得不同的应用程序,不同的计算机之间可以安全有效地共享和交换数据.要保证安全有效地操作共享数据,必须在相应的操作前判断锁的类型,然后才能确定 ...
- Logstash type来标记事件类型,通过type判断
/*************** 根据type判断 input { file { type => "zj_frontend_access" path => [" ...
- Linux进程间通信——使用信号
一.什么是信号 用过Windows的我们都知道,当我们无法正常结束一个程序时,可以用任务管理器强制结束这个进程,但这其实是怎么实现的呢?同样的功能在Linux上是通过生成信号和捕获信号来实现的,运行中 ...
- linux 启动 oracle数据库
第一步:切换到oracle用户 su - oracle 第二步:启动oracle数据库监听 lsnrctl start 第三步:输入下方命令,出现:sql> sqlplus /nolog 第四步 ...
- H面试程序(11): 判断字符串是否包含子串问题
题目描述: 如字符串str1为''abcdef''' 字符串str2为'' bc''; 则字符串str1中含有 ...
- 8位(bit)=1字节(Byte)
8位(bit)=1字节(Byte),1024字节=1KB: 提到了字节,不得不再提到“字”这个计量单位:“字”由若干个字节构成,字的位数叫做字长,字长就是说字所对应的二进制数的长度.不同的机器有不同的 ...
- leetcode_question_125 Valid Palindrome
Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignori ...
- android 实现静默安装、卸载
方法1:[使用调用接口方法,由于安装卸载应用程序的部分API是隐藏的,所以必须下载Android系统源码,在源码下开发并编译之后使用MM命令编译生成APK文件] import java.io.File ...
- linux下的DNS
Linux下设置DNS的位置主要是, 1网卡设置配置文件里面DNS服务器地址设置;2 hosts文件指定 3.系统默认DNS服务器地址设置/etc/resolv.conf文件修改 生效顺序是: 1 h ...