题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4750

题目大意:

给一无向图,n个点,m条边,每条边有个长度,且不一样。定义f(i,j)表示从节点i到节点j的所有路径中的最大边权值的最小值。有q个询问,每个询问有个t,求f(i,j)>=t的种数。

解题思路:

并查集+简单dp+二分。

比赛的时候各种TLE和MLE。只是查找方式不对。

队友思路,先按边从小到大排序考虑,对于每条边E该边两个节点为a、b,如果a、b不在同一个联通块,则a联通块中点集A和b联通块中点集B的f值一定为E(因为E升序)。恰好能使其通路。

map[i]表示以权值为i的边作为f值的点对个数。

sum[i]表示以大于等于第i大边权值的权值作为f值得点对总的个数。

对于每一个t,在排序了的sig[i](能取的边权值)中二分找到大于等于它的最小的小标j。输出sum[j]即可。

注意:

求点对个数时要乘以2.

代码:

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#define eps 1e-6
#define INF 0x3fffffff
#define PI acos(-1.0)
#define ll __int64
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; #define Maxn 11000
#define Maxm 510000
struct Edge
{
int a,b,c;
}edge[Maxm];
map<int,int>myp; short int fa[Maxn],num[Maxn];
int n,m;
int sum[Maxm],sig[Maxm]; bool cmp(struct Edge aa,struct Edge bb)
{
return aa.c<bb.c; //对边排序
} int find(int x) //并查集 路径压缩
{
int tmp=x; while(x!=fa[x])
x=fa[x]; while(fa[tmp]!=x)
{
int tt=fa[tmp];
fa[tmp]=x;
tmp=tt;
}
return x;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(~scanf("%d%d",&n,&m))
{
int a,b,c;
myp.clear(); for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
edge[i].a=a,edge[i].b=b,edge[i].c=c;
sig[i]=c;
}
sort(edge+1,edge+m+1,cmp);
for(int i=0;i<=n;i++)
{
fa[i]=i;
num[i]=1; //以i为根的联通块点的个数
}
for(int i=1;i<=m;i++)
{
int ra=find(edge[i].a);
int rb=find(edge[i].b);
if(ra!=rb) //不在一个联通块内,两个块内的点通过该边连接,f值为该边
{
if(myp.find(edge[i].c)!=myp.end())
myp[edge[i].c]=myp[edge[i].c]+num[ra]*num[rb]*2;
else
myp[edge[i].c]=num[ra]*num[rb]*2;
fa[rb]=ra; //合并
num[ra]+=num[rb];
}
}
int q;
scanf("%d",&q);
sort(sig+1,sig+m+1); //对边权值排序
memset(sum,0,sizeof(sum));//sum[i]表示以大于等于第i大边权值的权值作为f值得点对总的个数。
sum[m]=myp[sig[m]];
for(int i=m-1;i>=1;i--)
sum[i]+=sum[i+1]+myp[sig[i]];
for(int i=1;i<=q;i++)
{
int tt;
scanf("%d",&tt);
int pos=lower_bound(sig+1,sig+m+1,tt)-sig;//二分查找位置
printf("%d\n",sum[pos]); } }
return 0;
}

并查集+二分-hdu-4750-Count The Pairs的更多相关文章

  1. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  2. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  3. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  4. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  5. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  6. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  7. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

  8. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  9. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  10. HDU 5441——Travel——————【并查集+二分查界限】

    Travel Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Su ...

随机推荐

  1. hbase单机安装

    1.网上内容比较混乱,其实安装单机hbase只需要安装hbase即可 2.把hbase-0.xxx.tart.gz 拷贝到/opt/hbase文件及下(这是安装目录,可自定义) 2.1 tar xfz ...

  2. LabVIEW新手5大错误

    虽然NI LabVIEW软件长期以来一直帮助工程师和科学家们快速开发功能测量和控制应用,但不是所有的新用户都会遵循LabVIEW编程的最佳方法. LabVIEW图形化编程比较独特,因为只需看一眼用户的 ...

  3. RMAN-使用catalog恢复目录进行备份与恢复

    RMAN ArchitectureThe RMAN architecture, shown in Figure 7-3, includes a target database, repository, ...

  4. gdalwarp:变形工具

    1 gdalwarp:变形工具.包括投影.拼接.及相关的变形功能.此工具功能强大,但效率不高,使用时注意 gdalwarp [--help-general] [--formats]     [-s_s ...

  5. gdal_merge.py

    1 gdal_merge.py: 合并(Merge)/镶嵌(Mosaic)工具.要求图像必须是相同坐标系统.具有相同的波段数:可以不同分辨率,可以有重叠区域(后加入图像覆盖先加入的图像). 注意:只能 ...

  6. c# 调用 友盟api

    今天要使用友盟的推送API来给我的app进行推送信息,调试了好久,老是返回500错误,最终在友盟的技术人员支持下完成了此操作,在此多谢友盟技术和客服人员. 把发方法和注意事项贴出来供大家参考. pub ...

  7. Git入门——基础知识问答

    问题一:为什么要选择Git作为Android开发的版本控制工具?     答:1)git是android项目和社区的统一语言.            2)高通版本发布频繁,需要与平台及时同步,快速re ...

  8. POJ 2455 Secret Milking Machine (二分 + 最大流)

    题目大意: 给出一张无向图,找出T条从1..N的路径,互不重复,求走过的所有边中的最大值最小是多少. 算法讨论: 首先最大值最小就提醒我们用二分,每次二分一个最大值,然后重新构图,把那些边权符合要求的 ...

  9. JSON的parse()方法

    JSON方法也可以接受另外的一个参数,作为还原函数. 实例: var book = { title:"JavaScript Learn", author:["wang&q ...

  10. css布局学习笔记之max-width

    设置块级元素的 width 可以阻止它从左到右撑满容器.然后你就可以设置左右外边距为 auto 来使其水平居中.元素会占据你所指定的宽度,然后剩余的宽度会一分为二成为左右外边距. div{ width ...