Java 线程池
系统启动一个线程的成本是比较高的,因为它涉及到与操作系统的交互,使用线程池的好处是提高性能,当系统中包含大量并发的线程时,会导致系统性能剧烈下降,甚至导致JVM崩溃,而线程池的最大线程数参数可以控制系统中并发线程数不超过次数。
一、Executors 工厂类用来产生线程池,该工厂类包含以下几个静态工厂方法来创建对应的线程池。创建的线程池是一个ExecutorService对象,使用该对象的submit方法或者是execute方法执行相应的Runnable或者是Callable任务。线程池本身在不再需要的时候调用shutdown()方法停止线程池,调用该方法后,该线程池将不再允许任务添加进来,但是会直到已添加的所有任务执行完成后才死亡。
1、newCachedThreadPool(),创建一个具有缓存功能的线程池,提交到该线程池的任务(Runnable或Callable对象)创建的线程,如果执行完成,会被缓存到CachedThreadPool中,供后面需要执行的任务使用。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class CacheThreadPool {
static class Task implements Runnable {
@Override
public void run() {
System.out.println(this + " " + Thread.currentThread().getName() + " AllStackTraces map size: "
+ Thread.currentThread().getAllStackTraces().size());
}
} public static void main(String[] args) {
ExecutorService cacheThreadPool = Executors.newCachedThreadPool(); //先添加三个任务到线程池
for(int i = 0 ; i < 3; i++) {
cacheThreadPool.execute(new Task());
} //等三个线程执行完成后,再次添加三个任务到线程池
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
} for(int i = 0 ; i < 3; i++) {
cacheThreadPool.execute(new Task());
}
} }
执行结果如下:
CacheThreadPool$Task@2d312eb9 pool-1-thread-1 AllStackTraces map size: 7
CacheThreadPool$Task@59522b86 pool-1-thread-3 AllStackTraces map size: 7
CacheThreadPool$Task@73dbb89f pool-1-thread-2 AllStackTraces map size: 7
CacheThreadPool$Task@5795cedc pool-1-thread-3 AllStackTraces map size: 7
CacheThreadPool$Task@256d5600 pool-1-thread-1 AllStackTraces map size: 7
CacheThreadPool$Task@7d1c5894 pool-1-thread-2 AllStackTraces map size: 7
线程池中的线程对象进行了缓存,当有新任务执行时进行了复用。但是如果有特别多的并发时,缓存线程池还是会创建很多个线程对象。
2、newFixedThreadPool(int nThreads) 创建一个指定线程个数,线程可复用的线程池。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class FixedThreadPool {
static class Task implements Runnable {
@Override
public void run() {
System.out.println(this + " " + Thread.currentThread().getName() + " AllStackTraces map size: "
+ Thread.currentThread().getAllStackTraces().size());
}
} public static void main(String[] args) {
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3); // 先添加三个任务到线程池
for (int i = 0; i < 5; i++) {
fixedThreadPool.execute(new Task());
} // 等三个线程执行完成后,再次添加三个任务到线程池
try {
Thread.sleep(3);
} catch (InterruptedException e) {
e.printStackTrace();
} for (int i = 0; i < 3; i++) {
fixedThreadPool.execute(new Task());
}
} }
执行结果:
FixedThreadPool$Task@7045c12d pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@50fa0bef pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@ccb1870 pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@7392b4e3 pool-1-thread-1 AllStackTraces map size: 7
FixedThreadPool$Task@5bdeff18 pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@7d5554e1 pool-1-thread-1 AllStackTraces map size: 7
FixedThreadPool$Task@24468092 pool-1-thread-3 AllStackTraces map size: 7
FixedThreadPool$Task@fa7b978 pool-1-thread-2 AllStackTraces map size: 7
3、newSingleThreadExecutor(),创建一个只有单线程的线程池,相当于调用newFixedThreadPool(1)
4、newSheduledThreadPool(int corePoolSize),创建指定线程数的线程池,它可以在指定延迟后执行线程。也可以以某一周期重复执行某一线程,知道调用shutdown()关闭线程池。
示例如下:
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit; public class ScheduledThreadPool {
static class Task implements Runnable {
@Override
public void run() {
System.out.println("time " + System.currentTimeMillis() + " " + Thread.currentThread().getName() + " AllStackTraces map size: "
+ Thread.currentThread().getAllStackTraces().size());
}
} public static void main(String[] args) {
ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(3); scheduledExecutorService.schedule(new Task(), 3, TimeUnit.SECONDS); scheduledExecutorService.scheduleAtFixedRate(new Task(), 3, 5, TimeUnit.SECONDS); try {
Thread.sleep(30 * 1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
scheduledExecutorService.shutdown();
} }
运行结果如下:
time 1458921795240 pool-1-thread-1 AllStackTraces map size: 6
time 1458921795241 pool-1-thread-2 AllStackTraces map size: 6
time 1458921800240 pool-1-thread-1 AllStackTraces map size: 7
time 1458921805240 pool-1-thread-1 AllStackTraces map size: 7
time 1458921810240 pool-1-thread-1 AllStackTraces map size: 7
time 1458921815240 pool-1-thread-1 AllStackTraces map size: 7
time 1458921820240 pool-1-thread-1 AllStackTraces map size: 7
由运行时间可看出,任务是按照5秒的周期执行的。
5、newSingleThreadScheduledExecutor() 创建一个只有一个线程的线程池,同调用newScheduledThreadPool(1)。
二、ForkJoinPool和ForkJoinTask
ForkJoinPool是ExecutorService的实现类,支持将一个任务划分为多个小任务并行计算,在把多个小任务的计算结果合并成总的计算结果。它有两个构造函数
ForkJoinPool(int parallelism)创建一个包含parallelism个并行线程的ForkJoinPool。
ForkJoinPool(),以Runtime.availableProcessors()方法返回值作为parallelism参数来创建ForkJoinPool。
ForkJoinTask 代表一个可以并行,合并的任务。它是实现了Future<T>接口的抽象类,它有两个抽象子类,代表无返回值任务的RecuriveAction和有返回值的RecursiveTask。可根据具体需求继承这两个抽象类实现自己的对象,然后调用ForkJoinPool的submit 方法执行。
RecuriveAction 示例如下,实现并行输出0-300的数字。
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import java.util.concurrent.TimeUnit; public class ActionForkJoinTask {
static class PrintTask extends RecursiveAction {
private static final int THRESHOLD = 50;
private int start;
private int end; public PrintTask(int start, int end) {
this.start = start;
this.end = end;
} @Override
protected void compute() {
if (end - start < THRESHOLD) {
for(int i = start; i < end; i++) {
System.out.println(Thread.currentThread().getName() + " " + i);
}
} else {
int middle = (start + end) / 2;
PrintTask left = new PrintTask(start, middle);
PrintTask right = new PrintTask(middle, end);
left.fork();
right.fork();
}
} } public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool(); pool.submit(new PrintTask(0, 300));
try {
pool.awaitTermination(2, TimeUnit.SECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
} pool.shutdown();
} }
在拆分小任务后,调用任务的fork()方法,加入到ForkJoinPool中并行执行。
RecursiveTask示例,实现并行计算100个整数求和。拆分为每20个数求和后获取结果,在最后合并为最后的结果。
import java.util.Random;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;
import java.util.concurrent.RecursiveTask; public class TaskForkJoinTask {
static class CalTask extends RecursiveTask<Integer> {
private static final int THRESHOLD = 20; private int arr[];
private int start;
private int end; public CalTask(int[] arr, int start, int end) {
this.arr = arr;
this.start = start;
this.end = end;
} @Override
protected Integer compute() {
int sum = 0; if (end - start < THRESHOLD) {
for (int i = start; i < end; i++) {
sum += arr[i];
}
System.out.println(Thread.currentThread().getName() + " sum:" + sum);
return sum;
} else {
int middle = (start + end) / 2;
CalTask left = new CalTask(arr, start, middle);
CalTask right = new CalTask(arr, middle, end); left.fork();
right.fork(); return left.join() + right.join();
}
} } public static void main(String[] args) {
int arr[] = new int[100];
Random random = new Random();
int total = 0; for (int i = 0; i < arr.length; i++) {
int tmp = random.nextInt(20);
total += (arr[i] = tmp);
}
System.out.println("total " + total); ForkJoinPool pool = new ForkJoinPool(4); Future<Integer> future = pool.submit(new CalTask(arr, 0, arr.length));
try {
System.out.println("cal result: " + future.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
pool.shutdown();
} }
执行结果如下:
total 912
ForkJoinPool-1-worker-2 sum:82
ForkJoinPool-1-worker-2 sum:123
ForkJoinPool-1-worker-2 sum:144
ForkJoinPool-1-worker-3 sum:119
ForkJoinPool-1-worker-2 sum:106
ForkJoinPool-1-worker-2 sum:128
ForkJoinPool-1-worker-2 sum:121
ForkJoinPool-1-worker-3 sum:89
cal result: 912
子任务执行完后,调用任务的join()方法获取子任务执行结果,再相加获得最后的结果。
Java 线程池的更多相关文章
- Java 线程池框架核心代码分析--转
原文地址:http://www.codeceo.com/article/java-thread-pool-kernal.html 前言 多线程编程中,为每个任务分配一个线程是不现实的,线程创建的开销和 ...
- Java线程池使用说明
Java线程池使用说明 转自:http://blog.csdn.net/sd0902/article/details/8395677 一简介 线程的使用在java中占有极其重要的地位,在jdk1.4极 ...
- (转载)JAVA线程池管理
平时的开发中线程是个少不了的东西,比如tomcat里的servlet就是线程,没有线程我们如何提供多用户访问呢?不过很多刚开始接触线程的开发攻城师却在这个上面吃了不少苦头.怎么做一套简便的线程开发模式 ...
- Java线程池的那些事
熟悉java多线程的朋友一定十分了解java的线程池,jdk中的核心实现类为java.util.concurrent.ThreadPoolExecutor.大家可能了解到它的原理,甚至看过它的源码:但 ...
- 四种Java线程池用法解析
本文为大家分析四种Java线程池用法,供大家参考,具体内容如下 http://www.jb51.net/article/81843.htm 1.new Thread的弊端 执行一个异步任务你还只是如下 ...
- Java线程池的几种实现 及 常见问题讲解
工作中,经常会涉及到线程.比如有些任务,经常会交与线程去异步执行.抑或服务端程序为每个请求单独建立一个线程处理任务.线程之外的,比如我们用的数据库连接.这些创建销毁或者打开关闭的操作,非常影响系统性能 ...
- Java线程池应用
Executors工具类用于创建Java线程池和定时器. newFixedThreadPool:创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程.在任意点,在大多数 nThread ...
- Java线程池的原理及几类线程池的介绍
刚刚研究了一下线程池,如果有不足之处,请大家不吝赐教,大家共同学习.共同交流. 在什么情况下使用线程池? 单个任务处理的时间比较短 将需处理的任务的数量大 使用线程池的好处: 减少在创建和销毁线程上所 ...
- Java线程池与java.util.concurrent
Java(Android)线程池 介绍new Thread的弊端及Java四种线程池的使用,对Android同样适用.本文是基础篇,后面会分享下线程池一些高级功能. 1.new Thread的弊端执行 ...
- [转 ]-- Java线程池使用说明
Java线程池使用说明 原文地址:http://blog.csdn.net/sd0902/article/details/8395677 一简介 线程的使用在java中占有极其重要的地位,在jdk1. ...
随机推荐
- SQL--触发器
- 【原创】Lucene.Net+盘古分词器(详细介绍)
本章阅读概要 1.Lucenne.Net简介 2.介绍盘古分词器 3.Lucene.Net实例分析 4.结束语(Demo下载) Lucene.Net简介 Lucene.net是Lucene的.net移 ...
- 存储过程返回布尔值以及C#相关处理
前段时间有在数据库以及程序之间使用到布尔(bool,Boolean)值的问题. 比如在SQL中,你想判断记录是否存? 通常你会这样写: FROM [dbo].[SixSResponsiblePerso ...
- 【C#】1.3 WPF应用程序学习要点
分类:C#.VS2015 创建日期:2016-06-14 使用教材:十二五国家级规划教材<C#程序设计及应用教程>(第3版) 一.要点概述 <C#程序设计及应用教程>(第3版) ...
- Visual Studio统计代码行数
按[Ctrl+Shift+F]弹出查找窗口(不统计以#号开头.以/开头的代码和空行) 1.输入 :b*[^:b#/]+.*$ 2.选择使用正则表达式 3.查找文件类型,*.cs多种类型用分号(;)隔 ...
- jsp--- jsp图片上传到了正确路径,但在正确路径显示不出来
首先要说的是,路径里没有中文 图片也在正确路径 ************************************ 刷新(Refresh)一下项目
- Oracle中的数据分页
--数据分页脚本 --创建包含数据分页代码元素声明的包头结构create or replace package data_controlis type type_cursor_data is ref ...
- 泛函编程(32)-泛函IO:IO Monad
由于泛函编程非常重视函数组合(function composition),任何带有副作用(side effect)的函数都无法实现函数组合,所以必须把包含外界影响(effectful)副作用不纯代码( ...
- Oracle EBS Form 发布到Server端的注意事项
前段时间在本地XP系统上测试了一些整合javabean的Form例子,想着发布到服务器段去看看能否运行正常,一开始以为会和本地XP系统一样,部署到相关的目录下进行一些配置就可以了,但实际过程却和想象的 ...
- 对jQuery选择器的总结
jQuery基础选择器 $("div*")获取div下面的所有元素 $(".red,.green").html("怎么") // 需要注意的 ...