(混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)
Description
Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.
FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).
Input
Line 2: N space-separated integers, respectively V1, V2, ..., VN coins (V1, ...VN)
Line 3: N space-separated integers, respectively C1, C2, ..., CN
Output
Sample Input
3 70
5 25 50
5 2 1
Sample Output
3
Hint
解法:支付时硬币数量有限制,为多重背包问题,通过二进制方法转化为01背包求解。找零时,硬币数量无限制,为完全背包问题。对两问题分别求解,然后找出差额为T时,两者和的最小值即为所示。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; #define met(a,b) (memset(a,b,sizeof(a)))
#define N 20000
#define INF 0x3f3f3f3f int V[], C[];
int v[N], c[N], dp[N];
int n, T, sum, k, Update; ///Update为更新的范围, 价值T最大为10000,而V[i]最大为120, 因此Update为10200便可以 void Init() ///将多重背包利用倍增法,转化为01背包
{ ///并解决一些初始化的问题
int i, j; k=;
for(i=; i<=n; i++)
{
for(j=; j<=C[i]; j*=)
{
v[k] = V[i]*j;
c[k++] = j;
C[i] -= j;
}
if(C[i])
{
v[k] = V[i]*C[i];
c[k++] = C[i];
C[i] = ;
}
}
k--; for(i=; i<=Update; i++)
dp[i] = INF;
} void First()
{
int i, j; dp[] = ;
for(i=; i<=k; i++)
{
for(j=Update; j>=v[i]; j--)
dp[j] = min(dp[j], dp[j-v[i]]+c[i]);
}
} int Secound()
{
int i, j; for(i=; i<=n; i++)
{
for(j=Update-V[i]; j>=; j--)
{///看好哦, 这里是加号,也就是从后面更新过来的, 于是第二重循环要逆着来
dp[j] = min(dp[j], dp[j+V[i]]+);
}
} return dp[T];
} int main()
{
while(scanf("%d%d", &n, &T)!=EOF)
{
int i;
sum=;
for(i=; i<=n; i++)
scanf("%d", &V[i]);
for(i=; i<=n; i++)
{
scanf("%d", &C[i]);
sum += V[i]*C[i];
}
Update=; Init(); ///初始化
First();///01背包
int ans = Secound(); ///完全背包 if(T>sum) printf("-1\n");
else
{
if(ans==INF) ///如果ans==INF说明并没有更新到dp[T],不能兑换到
printf("-1\n");
else
printf("%d\n", dp[T]);
} }
return ;
}
(混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)的更多相关文章
- The Fewest Coins POJ - 3260
The Fewest Coins POJ - 3260 完全背包+多重背包.基本思路是先通过背包分开求出"付出"指定数量钱和"找"指定数量钱时用的硬币数量最小值 ...
- POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)
题目代号:POJ 3260 题目链接:http://poj.org/problem?id=3260 The Fewest Coins Time Limit: 2000MS Memory Limit: ...
- POJ3260——The Fewest Coins(多重背包+完全背包)
The Fewest Coins DescriptionFarmer John has gone to town to buy some farm supplies. Being a very eff ...
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
- POJ3260The Fewest Coins[背包]
The Fewest Coins Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6299 Accepted: 1922 ...
- (多重背包+记录路径)Charlie's Change (poj 1787)
http://poj.org/problem?id=1787 描述 Charlie is a driver of Advanced Cargo Movement, Ltd. Charlie dri ...
- hdoj2191 珍惜现在,感恩生活(01背包 || 多重背包)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2191 思路 由于每种大米可能不止一袋,所以是多重背包问题,可以直接使用解决多重背包问题的方法,也可以将 ...
- dp--01背包,完全背包,多重背包
背包问题 以下代码 n是物品个数,m是背包容积 物品价值和重量int v[maxn],w[maxn]; 01背包 模板 for(int i = 0; i < n; i++) { for(int ...
- 多重背包转化成完全背包 E - Charlie's Change
http://poj.org/problem?id=1787 这个题目我一看就觉得是一个多重背包,但是呢,我不知道怎么输出路径,所以无可奈何,我就只能看一下题解了. 看了题解发现居然是把多重背包转化成 ...
- nyoj 311-完全背包 (动态规划, 完全背包)
311-完全背包 内存限制:64MB 时间限制:4000ms Special Judge: No accepted:5 submit:7 题目描述: 直接说题意,完全背包定义有N种物品和一个容量为V的 ...
随机推荐
- OAF 中的EO 和VO
EO :oracle.apps.fnd.framework.server.OAEntityImpl VO:oracle.apps.fnd.framework.server.OAViewRowImpl ...
- 干货 | Docker文件系统的分层与隔离
现在就开始今天的分享~ M老师:docker 的很多特性都表现在它所使用的文件系统上,比如大家都知道docker的文件系统是分层的,所以它可以快速迭代,可以回滚.这个回滚机制跟github很像,每次提 ...
- 手机版 div拖动
<!doctype html> <html> <head> <title></title> <script type="te ...
- (转载)AppScan使用分享
转载:http://www.cnblogs.com/fnng/archive/2012/10/09/2717568.html 这里主要分享如何使用AppScan对一大项目的部分功能进行安全扫描. -- ...
- 【译】RabbitMQ:远程过程调用(RPC)
在教程二中,我们学习了如何使用工作队列在多个工作线程中分发耗时的任务.但如果我们需要去执行远程机器上的方法并且等待结果会怎么样呢?那又是另外一回事了.这种模式通常被称为远程过程调用(RPC). 本教程 ...
- String和string的区别(C#)
从位置讲: 1.String是.NET Framework里面的String,小写的string是C#语言中的string 2.如果把using System;删掉,没有大写的String了,Sys ...
- vs2010 A selected drive is no longer valid
visual studio 2010重新安装添加组件,报A selected drive is no longer valid错误. 这个是由于已经安装了sp1,此时需要将sp1卸载掉,然后就可以安装 ...
- git资料图
- 取出Object对象里面的字段,
Type s = result.GetType(); bool f = (bool)s.GetField("Succeed").GetValue(result);//Succeed ...
- getElementByName()和getElementById的区别
因为在属性中,id时唯一的,getElementById取出的是一个元素但是可以出现相同的name,取到的是一个Array ,getElementsByName取出的是数组 记录代码如下: <! ...