/*************************************************************************
> File Name: j.cpp
> Author: HJZ
> Mail: 2570230521@qq.com
> Created Time: 2014年08月28日 星期四 12时26分13秒
************************************************************************/ //提議:能否將一個給定的有向圖,變成兩個完全圖(任意兩點都直接相連,雙向邊) #include <queue>
#include <string>
#include <cstdio>
#include <stack>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 105
using namespace std; int a[N], b[N];
//a, b集合初始化爲空!
int g[N][N];
int n; bool flag; bool dfs(int u, int la, int lb){
if(u>n && la+lb==n) return true;//如果a ,b集合中的元素數目恰好是n,則說明可以形成兩個完全圖!
bool flagx=true;
for(int i=; i<la && flagx; ++i)
if(!(g[a[i]][u] && g[u][a[i]]))
flagx=false;
if(flagx) a[la]=u;//如果u節點可以放入a集合中
if(flagx && dfs(u+, la+, lb)) return true;
bool flagy=true;
for(int i=; i<lb && flagy; ++i)
if(!(g[b[i]][u] && g[u][b[i]]))
flagy=false;
if(flagy) b[lb]=u;//如果u節點可以放入b集合中
if(flagy && dfs(u+, la, lb+)) return true;
return false;
} int main(){
while(scanf("%d", &n)!=EOF){
memset(g, , sizeof(g));
for(int i=; i<=n; ++i){
int v;
vis[i]=;
while(scanf("%d", &v) && v)
g[i][v]=;
}
flag=dfs(, , );
if(flag)
printf("YES\n");
else printf("NO\n");
}
return ;
}
 /*************************************************************************
> File Name: j.cpp
> Author: HJZ
> Mail: 2570230521@qq.com
> Created Time: 2014年08月28日 星期四 12时26分13秒
************************************************************************/
//思路:bfs,和判断二分图差不多,将图分成两个集合,如果a和b都有g[a][b]&&g[b][a]说明
//a和b一定在同一个集合中,如果有a,b不在一个集合中,a,c不在同一个集合中,b,c也不在同一个
//集合中,出现矛盾!也就是这个图不能分成两个完全图!
#include <queue>
#include <string>
#include <cstdio>
#include <stack>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 105
using namespace std;
queue<int>q;
int g[N][N];
int coll[N];
int n; bool bfs(int u){
while(!q.empty()) q.pop();
q.push(u);
while(!q.empty()){
int x=q.front();
q.pop();
for(int y=; y<=n; ++y){
if(x==y || g[x][y]&&g[y][x]) continue;
if(coll[y]==-){
coll[y]=coll[x]^;
q.push(y);
}
else if(coll[y]==coll[x])
return true;
}
}
return false;
} int main(){
while(scanf("%d", &n)!=EOF){
memset(g, , sizeof(g));
for(int i=; i<=n; ++i){
int v;
while(scanf("%d", &v) && v)
g[i][v]=;
coll[i]=-;
}
int i;
for(i=; i<=n; ++i){
if(coll[i]==-){
coll[i]=;//默认是在集合0中
if(bfs(i)) break;
}
}
if(i<=n) printf("NO\n");
else printf("YES\n");
}
return ;
}

hdu4751Divide Groups(dfs枚举完全图集合或者bfs染色)的更多相关文章

  1. poj 1753 Flip Game(bfs状态压缩 或 dfs枚举)

    Description Flip game squares. One side of each piece is white and the other one is black and each p ...

  2. POJ1288 Sly Number(高斯消元 dfs枚举)

    由于解集只为{0, 1, 2}故消元后需dfs枚举求解 #include<cstdio> #include<iostream> #include<cstdlib> ...

  3. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  4. POJ 1270 Following Orders (拓扑排序,dfs枚举)

    题意:每组数据给出两行,第一行给出变量,第二行给出约束关系,每个约束包含两个变量x,y,表示x<y.    要求:当x<y时,x排在y前面.让你输出所有满足该约束的有序集. 思路:用拓扑排 ...

  5. HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)

    想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...

  6. POJ 1753 Flip Game (DFS + 枚举)

    题目:http://poj.org/problem?id=1753 这个题在開始接触的训练计划的时候做过,当时用的是DFS遍历,其机制就是把每一个棋子翻一遍.然后顺利的过了.所以也就没有深究. 省赛前 ...

  7. Day054--MySQL, 创建用户和授权, 数据类型, 枚举和集合, 约束,唯一, 主键,外键

    创建用户和授权 1.创建用户: # 指定ip:192.118.1.1的mjj用户登录 create user 'mjj'@'192.118.1.1' identified by '123'; # 指定 ...

  8. 数据结构作业——图的存储及遍历(邻接矩阵、邻接表+DFS递归、非递归+BFS)

    邻接矩阵存图 /* * @Author: WZY * @School: HPU * @Date: 2018-11-02 18:35:27 * @Last Modified by: WZY * @Las ...

  9. HDU1045 Fire Net(DFS枚举||二分图匹配) 2016-07-24 13:23 99人阅读 评论(0) 收藏

    Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...

随机推荐

  1. JTA 深度历险 - 原理与实现

    转自http://www.ibm.com/developerworks/cn/java/j-lo-jta/ 在 J2EE 应用中,事务是一个不可或缺的组件模型,它保证了用户操作的 ACID(即原子.一 ...

  2. Android技术点

    一.四大组件 1.1  Activity 1.2  Broadcast 1.3  Content Provider 1.4  Service 1. Binder 2. Messager 3. AIDL ...

  3. css 文字与小图标对齐

    .icon { display: inline-block; width:20px; height:20px; background: url(delete.png) no-repeat center ...

  4. 选择排序-java

    排序-选择排序 基本思想:在待排序子表中找出最大(小)元素, 并将该元素放在子表的最前(后)面. 平均时间:O(n2) 最好情况:O(n2) 最坏情况:O(n2) 辅助空间:O(1) 稳定性:不稳定 ...

  5. [poi2007]mem

    题意:给定点数n<=300000的一棵树,然后初始时每条边权值为1,接下来按照时间点先后顺序的n+m-1个操作, 操作有两种: 1.A a b 把a到b的边权改为0 2.W u 求1号点到u号点 ...

  6. 视频聊天室可以用php制作吗?

    首先,告诉你单纯用php制作视频聊天室是实现不了的,需要配合其他技术手段一起操作,例如和FLASH配合,使用FLASH获取语音(FLASH可以获取访问端的设备,例如摄像头). PHP运行在服务器端,是 ...

  7. Encrypt

    begin#BE37F2FB34350DCA6242ADC91F33FA9ABDB6F502F5CA07E3D0CE0C3FAF8799AB3F4622564487B3729F111D9E132A08 ...

  8. iOS开发-NSOperation与GCD区别

    Mac OS X 10.6及iOS4.0之后导入了可以使全体线程更高效运行,并且使并行处理应用更易开发的架构,GCD(Grand Central  Dispatch),同时引入的还有Run Loop, ...

  9. [后端人员耍前端系列]KnockoutJs篇:使用WebApi+Bootstrap+KnockoutJs打造单页面程序

    一.前言 在前一个专题快速介绍了KnockoutJs相关知识点,也写了一些简单例子,希望通过这些例子大家可以快速入门KnockoutJs.为了让大家可以清楚地看到KnockoutJs在实际项目中的应用 ...

  10. [.NET领域驱动设计实战系列]专题四:前期准备之工作单元模式(Unit Of Work)

    一.前言 在前一专题中介绍了规约模式的实现,然后在仓储实现中,经常会涉及工作单元模式的实现.然而,在我的网上书店案例中也将引入工作单元模式,所以本专题将详细介绍下该模式,为后面案例的实现做一个铺垫. ...