清华微积分-1_Ch1习题
U3-1
Here are some sets:
(1) R both and
(2) ∅ both and
(3) (1,+∞) open set
(4) [−1,0] closed set, -1 and 0 , which are not interior points, belong to the set.
(5) {1,2,3} none of them is interior point. They are isolated points. And the set is discrete set. closed set
(6) {y|y=2*x^2+1,x∈[0,2)} =[1,+∞) closed set =[1,9), cuz 9 is a boundary point and is not included.
(7) Q × neither open set nor closed set
(8) Qc × neither open set nor closed set
Among the above sets, the total number of open set is: 3
the total number of closed set is:
U3-2
Consider the set S=[1,2)⋃{0}
Which of the following statements about S are TRUE?
is not an interior point of S is not an interior point of Sx=0 is not a limit point of Sx=2 is not a limit point of S
Given a set S ⊂ R, a point l ∈ R is called a limit point £4Å:§ or point of accumulation(‡:) of the set S, if every deleted δ-neighborhood of l contains one or more points of S.
U4-2
Given the set of numbers S={1,1.1,0.9,1.01,0.99,1.001,0.999,...}
S={1}⋃{1+0.1n|n∈N}⋃{1−0.1n|n∈N}
∀a∈S,a≤1.1anda≥0.9
∀b<1.1,1.1∈S>b
∀c>0.9,0.9∈S<c
So 1.1 is the LUB of S, and 0.9 is the GLB of S.
∀ε>0,∃n∈N, s.t.1+0.1^n∈S and 1+0.1^n−1=0.1^n<ε 1的任意去心邻域和S的交集不为空
So 1 is a limit point of S.
U5-2
Given following numbers:
e,
π,
0,
(√3−√2)/(√3+√2), = 5 - 2 √ 6 ==> x^2 - 10 x + 1 = 0
√2+√3+√5, 可构造出6次整数系数方程的解是√2+√3+√5
2+3i, x^2 - 4 x +13 = 0
4/7
Of all the numbers above,
Which ones are algebraics?
0, 4/7
Which ones are transcendentals?
e, π,
Which ones are irrational numbers?
e, π, (√3−√2)/(√3+√2), √2+√3+√5
清华微积分-1_Ch1习题的更多相关文章
- 数学常数e的含义
转载: http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...
- SymPy解方程的实现
https://www.cnblogs.com/zgyc/p/6277562.html SymPy完全是用Python写的,并不需要外部的库 原理: 单纯用语言内置的运算与变量解决的是,由值求结果.如 ...
- 柯朗微积分与数学分析习题选解(1.2 节 d)
一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...
- 柯朗微积分与数学分析习题选解(1.3 节 c)
一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...
- 柯朗微积分与数学分析习题选解(1.3 节 b)
一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...
- 柯朗微积分与数学分析习题选解(1.1 节 e)
一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...
- 柯朗微积分与数学分析习题选解(1.1 节 a)
一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...
- 《清华梦的粉碎》by王垠
清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我 ...
- 清华梦的粉碎—写给清华大学的退学申请(转自王垠Blog)
清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我知 ...
随机推荐
- JS获取Url中传入的参数
一:后台获取,前台调用 后台: object value= Request.QueryString[key]; 前台js: $(function(){ var value="<%=va ...
- 关于javascript面向对象的详解!
认识面向对象 1.面向对象中的概念 一切事物皆对象 对象具有封装和继承特性 信息隐藏 2.基本面向对象 3.函数构造器构造对象 深入了解面向对象 第一种书写格式 第二种书写格式
- fullpage 单屏高度超过屏幕高度,实现单屏内可以滚动并解决手机端单屏高度不正确的问题
最近接触了好几次jquery.fullpage.js这个插件,实现整屏的滑动,效果很炫,用fullpage来实现也很简单,但是也碰到了一些问题和大家分享一下 1.单屏高度超过屏幕高度,实现单屏的滑动 ...
- SQL Server 2012 联机丛书离线安装
昨日根据微软官网的方式安装SQL Server 2012 联机丛书报错,无法安装: 联机丛书下载位置及安装方式: 按照给出的方式安装,无法完成,错误如下:
- MySQL DCL 整理
DCL(Data Control Language)数据库控制语言 授权,角色控制等GRANT 授权REVOKE 取消授权
- 解读浮动闭合最佳方案:clearfix
.clear{clear:both;height:0;overflow:hidden;} 上诉办法是在需要清除浮动的地方加个div.clear或者br.clear,我们知道这样能解决基本清浮动问题. ...
- js解析网址获取需要的数据
/** * 获取地址栏内容,返回pathnamearrneed对象 * @param {Object} len 从第几位开始获取你需要的值 */ function myLocationId(len) ...
- Dns 类
Dns 类型公开以下成员. 方法 名称 说明 BeginGetHostAddresses 异步返回指定主机的 Internet 协议 (IP) 地址. BeginGetHostByName ...
- 学习PYTHON之路, DAY 7 - PYTHON 基础 7 (面向对象基础)
面向对象三大特性 一.封装 封装,顾名思义就是将内容封装到某个地方,以后再去调用被封装在某处的内容. 所以,在使用面向对象的封装特性时,需要: 将内容封装到某处 从某处调用被封装的内容 第一步:将内容 ...
- 使用ef查询有缓存的问题
使用mvc ef更新后数据之后刷新页面,发现页面的数据没有变,而数据库的数据更新了,找了一点资料,是因为ef6有个缓存机制: Repository 类: //此方法查询结果有缓存 public Lis ...