Sumdiv
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 16466   Accepted: 4101

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 

The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 

15 modulo 9901 is 15 (that should be output). 

要求的是A^B的所有因子的和之后再mod 9901的值。

因为一个数A能够表示成多个素数的幂相乘的形式。即A=(a1^n1)*(a2^n2)*(a3^n3)...(am^nm)。所以这个题就是要求

(1+a1+a1^2+...a1^n1)*(1+a2+a2^2+...a2^n2)*(1+a3+a3^2+...a3^n2)*...(1+am+am^2+...am^nm)
mod 9901。

对于每一个(1+a1+a1^2+...a1^n1) mod 9901

等于 (a1^(n1+1)-1)/(a1-1) mod 9901,这里用到逆元的知识:a/b mod c = (a mod (b*c))/ b

所以就等于(a1^(n1+1)-1)mod (9901*(a1-1)) / (a1-1)。

至于前面的a1^(n1+1),快速幂。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
#define M 9901 long long p[100008];
int prime[100008]; void isprime()
{
int cnt = 0, i, j;
memset(prime, 0, sizeof(prime)); for (i = 2; i < 100008; i++)
{
if (prime[i] == 0)
{
p[++cnt] = i;
for (j = 2 * i; j <100008;j=j+i)
{
prime[j] = 1;
}
}
}
}
long long getresult(long long A,long long n,long long k)
{
long long b = 1;
while (n > 0)
{
if (n & 1)
{
b = (b*A)%k;
}
n = n >> 1;
A = (A*A)%k;
}
return b;
}
void solve(long long A, long long B)
{
int i;
long long ans = 1;
for (i = 1; p[i] * p[i] <= A; i++)
{
if (A%p[i] == 0)
{
int num = 0;
while (A%p[i] == 0)
{
num++;
A = A / p[i];
}
long long m = (p[i] - 1) * 9901;
ans *= (getresult(p[i], num*B + 1, m) + m - 1) / (p[i] - 1);
ans %= 9901;
}
}
if (A > 1)
{
long long m = 9901 * (A - 1);
ans *= (getresult(A, B + 1, m) + m - 1) / (A - 1);
ans %= 9901;
}
cout << ans << endl;
} int main()
{
long long A, B; isprime(); while (scanf("%lld%lld", &A, &B) != EOF)
{
solve(A, B);
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1845:Sumdiv 快速幂+逆元的更多相关文章

  1. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  2. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  3. HDU 5685 Problem A | 快速幂+逆元

    Problem A Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  4. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  5. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  6. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

  7. POJ 1845 Sumdiv (整数拆分+等比快速求和)

    当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...

  8. POJ 1845 Sumdiv(求因数和 + 逆元)题解

    题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...

  9. poj 1845 Sumdiv(约数和,乘法逆元)

    题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...

随机推荐

  1. 四、java基础-面向过程_对象_类中可出现的因素

    1.面向过程和面向对象区别: 1)面向过程:开发一个应用程序.一个项目,必须先了解整个过程,了解各个步骤.模块间的因果关系,使的面向过程方式去开发程序时,代码和代码之间的关联程度是非常强.所以其中任何 ...

  2. springcloud-alibaba手写负载均衡的坑,采用restTemplate,不能添加@loadbalanced注解,否则采用了robbin

    采用springcloud-alibaba整合rabbion使用DiscoveryClient调用restful时遇到的一个问题,报错如下: D:\javaDevlepTool\java1.8\jdk ...

  3. springboot自定义属性文件与bean映射注入属性值

    主要有几点: 一.导入依赖 springboot的包和: <dependency> <groupId>org.springframework.boot</groupId& ...

  4. 挖洞经验 | 绕过WAF限制利用php:方法实现OOB-XXE漏洞利用

    几个星期以前,作者在某个OOB-XXE漏洞测试中遇到过这样一种场景:目标应用后端系统WAF防火墙阻挡了包含DNS解析在内的所有出站请求(Outgoing Request),但最终,通过利用php:// ...

  5. 链表题目汇总(python3)

    1.从头到尾打印链表 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. # -*- coding:utf-8 -*- class ListNode: def __init__(self ...

  6. Mongoose多表查询

    文章来自 两个表关联查询aggregate 多个表关联查询aggregate populate多表关联查询 多表查询的两个方式 一个是aggregate聚合 一个是populate Schema的外表 ...

  7. 011-PHP获取数组中的元素

    <?php $monthName = array( /*定义$monthName[1]到$monthName[12]*/ 1=>"January", "Feb ...

  8. Fr3设置图片打印

    见 fr3的文件内容,为xml <?xml version="1.0" encoding="utf-8"?> <TfrxReport Vers ...

  9. Golang的循环结构-for语句

    Golang的循环结构-for语句 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.for循环语法 循环结构在生活中的场景也非常的多,比如: ()上班族们每天朝九晚五的生活; ( ...

  10. 51nod 1294 :修改数组 && HDU 5256:序列变换

    1294 修改数组 题目来源: HackerRank 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  取消关注 给出一个整数数组A,你可以将任何一个数修 ...