Sumdiv
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 16466   Accepted: 4101

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 

The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 

15 modulo 9901 is 15 (that should be output). 

要求的是A^B的所有因子的和之后再mod 9901的值。

因为一个数A能够表示成多个素数的幂相乘的形式。即A=(a1^n1)*(a2^n2)*(a3^n3)...(am^nm)。所以这个题就是要求

(1+a1+a1^2+...a1^n1)*(1+a2+a2^2+...a2^n2)*(1+a3+a3^2+...a3^n2)*...(1+am+am^2+...am^nm)
mod 9901。

对于每一个(1+a1+a1^2+...a1^n1) mod 9901

等于 (a1^(n1+1)-1)/(a1-1) mod 9901,这里用到逆元的知识:a/b mod c = (a mod (b*c))/ b

所以就等于(a1^(n1+1)-1)mod (9901*(a1-1)) / (a1-1)。

至于前面的a1^(n1+1),快速幂。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
#define M 9901 long long p[100008];
int prime[100008]; void isprime()
{
int cnt = 0, i, j;
memset(prime, 0, sizeof(prime)); for (i = 2; i < 100008; i++)
{
if (prime[i] == 0)
{
p[++cnt] = i;
for (j = 2 * i; j <100008;j=j+i)
{
prime[j] = 1;
}
}
}
}
long long getresult(long long A,long long n,long long k)
{
long long b = 1;
while (n > 0)
{
if (n & 1)
{
b = (b*A)%k;
}
n = n >> 1;
A = (A*A)%k;
}
return b;
}
void solve(long long A, long long B)
{
int i;
long long ans = 1;
for (i = 1; p[i] * p[i] <= A; i++)
{
if (A%p[i] == 0)
{
int num = 0;
while (A%p[i] == 0)
{
num++;
A = A / p[i];
}
long long m = (p[i] - 1) * 9901;
ans *= (getresult(p[i], num*B + 1, m) + m - 1) / (p[i] - 1);
ans %= 9901;
}
}
if (A > 1)
{
long long m = 9901 * (A - 1);
ans *= (getresult(A, B + 1, m) + m - 1) / (A - 1);
ans %= 9901;
}
cout << ans << endl;
} int main()
{
long long A, B; isprime(); while (scanf("%lld%lld", &A, &B) != EOF)
{
solve(A, B);
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1845:Sumdiv 快速幂+逆元的更多相关文章

  1. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  2. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  3. HDU 5685 Problem A | 快速幂+逆元

    Problem A Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  4. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  5. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  6. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

  7. POJ 1845 Sumdiv (整数拆分+等比快速求和)

    当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...

  8. POJ 1845 Sumdiv(求因数和 + 逆元)题解

    题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...

  9. poj 1845 Sumdiv(约数和,乘法逆元)

    题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...

随机推荐

  1. Subtitles

    1. 字幕Subtitles 2. 字幕类型 3. 字幕格式 4. 常用文本字幕 5. 字幕编辑器 6. 字幕编辑器比较 1. 字幕Subtitles https://en.wikipedia.org ...

  2. sql语句中,传入的参数带单引号的问题

    今天在大批量操作数据时,遇到此问题,解决如下: if(cateName.indexOf("'")!=-1){ oql = " select * where name = ...

  3. 树莓派中实现ll命令

    用管了centos的童鞋们,到了一个没有ll命令的环境里,那是多么的痛苦,在baidu后,将实现方法记录如下 方法一: echo "alias ll='ls -l'" >&g ...

  4. 【随缘更(gu)】牛客D4简要思路(没有题解)

    T1 当然不能枚举每个区间,于是我们考虑算贡献. 对于每个位置i,我们计算其作为区间内第一个出现ai的位置的区间总数,则有ans=sigma( i - last[i] ) * ( n - i + 1 ...

  5. luogu P3357 最长k可重线段集问题

    这题和3358一模一样,建模形式直接不用变,就两点不一样,一是len变化了,加入y后再更新即可,还有就是可能会出现x0=x1的情况,即一条开线段垂直x轴,如果我们依旧按照上一题的建图方法,就会出现负权 ...

  6. 使用Spring Cloud Gateway保护反应式微服务(二)

    抽丝剥茧,细说架构那些事——[优锐课] 接着上篇文章:使用Spring Cloud Gateway保护反应式微服务(一) 我们继续~ 将Spring Cloud Gateway与反应式微服务一起使用 ...

  7. c基本语法介绍

    c语言基本语法介绍 1.把常量定义为大写字母形式,是一个很好的编程实践.

  8. 《ORACLE数据库管理与开发》第三章学习之常用函数记录

    <ORACLE数据库管理与开发>第三章学习之常用函数记录 注:文章中的*代表所要操作的列名 1.lower(*)/upper(*),将此列下的值转为小写/大写 2.initcap(*):把 ...

  9. Mozilla Firefox 68 正式发布下载:对刚Chrome

    Mozilla Firefox 68开源和跨平台Web浏览器现在正式发布,可以下载适用于GNU/Linux,Mac和Windows平台的Firefox 68了. Firefox 68网络浏览器现在可以 ...

  10. hue中访问hdfs报错

    在hue中访问hdfs报错: Cannot access: /. Note: you are a Hue admin but not a HDFS superuser, "hdfs" ...