B - Piggy-Bank

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
 
非常典型的完全背包以及恰好装满问题。
首先,要实现完全背包,循环背包容量的时候,即从0 到 最大容量,模拟一个矩阵数表也看得出,这样只要背包存得下,即从前一个f[j-v[i]]状态再加当前物品,等该层循环完毕,单种物品已经尽可能多的存在了背包当中。。。这是我对完全背包的理解。
 
然后是恰好装满问题,我一开始想的是,判断f[max]与f[max-1]是否相等,不过感觉略有些虚,好像对也好像不对。。。。然后网上大神给的标解是,将f[0]=0,其他值,如果是求背包最大,则设置为-inf(无穷小),如果是求背包最小,则设置为inf。。。这样想一下也很明晰,唯有f[0+某商品]才真正是背包容量,其他的无穷大和无穷小的状态都是虚的。。。针对本体来说,如果最终f[max]仍旧是无穷大,那说明根本凑不齐恰好装满这种状态。
 
然后还有一点心得是:本题是求背包最小值,我有点定向思维,写多了求最大值的背包,其实求最小值也是一样的写法,我目前的思路就是,将f[0]赋值为0,其他的都赋值为无穷大。然后在遍历过程中,取min值。
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[];
int w[],p[];
int max(int x,int y)
{
if (x>y) return y;
return x;
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int em,fu;
scanf("%d %d",&em,&fu);
int wei=fu-em;
int n;
scanf("%d",&n);
int i,j,k;
for (i=;i<n;i++)
{
scanf("%d %d",&p[i],&w[i]);
}
for (i=;i<=wei;i++) f[i]=1e9;
f[]=;
for (i=;i<n;i++)
{
for (j=;j<=wei;j++) //从小到大遍历背包容量,完全背包
{
if (j-w[i]>=)
{
f[j]=min(f[j],f[j-w[i]]+p[i]);
}
}
}
if (f[wei]==1e9) puts("This is impossible.");//若满足条件,说明根本不能恰好装满。
else
printf("The minimum amount of money in the piggy-bank is %d.\n",f[wei]);
}
return ;
}
 

HDU-1114 完全背包+恰好装满问题的更多相关文章

  1. 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  2. HDU - 1114 Piggy-Bank 完全背包(背包恰好装满)

    Piggy-Bank Before ACM can do anything, a budget must be prepared and the necessary financial support ...

  3. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  4. QDUOJ 分辣条-01背包恰好装满情况

    分辣条 发布时间: 2016年6月26日 20:36   最后更新: 2016年6月26日 20:37   时间限制: 1000ms   内存限制: 128M 描述 “你喝的酸奶是我买的,辣条也是我买 ...

  5. HDU 1114 完全背包+判断能否装满

    题意 给出一个存钱罐里的钱币重量 给出可能的n种钱币重量以及价值 求存钱罐中钱币的最小价值 若不可能另有输出 在裸的完全背包上加了一点东西 即判断这个背包能否被装满 初始化 dp[0]=0 其余的都使 ...

  6. hdu 1114(完全背包)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. Piggy-Bank HDU - 1114 完全背包

    #include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...

  8. 题解报告:NYOJ #311完全背包(恰好装满)

    描述: 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题 ...

  9. ACM_01背包(恰好装满)

    背包2 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有n个重量和价值分别为Wi,Vi的物品,现从这些物品中挑选出总量刚好为 W ...

随机推荐

  1. Day2:接着思考和可能的策划

    今天早上闹钟还没响呢,老婆就把我叫醒了~说有规律宫缩了! 7点到8点记录了一个小时,宫缩差不多5~6分钟一次! 赶紧收拾东西上医院!正好今天是40周的产检,今天还是预产期! 这孩子终于肯出来了! 结果 ...

  2. Mysql8.0免安装包配置方法

    1. 官网下载mysql_8.0.12免安装包,解压到你存放的地方: https://www.jb51.net/softs/609101.html 2. 配置环境变量(把bin的文件夹弄进系统path ...

  3. CentOS操作系统部署zabbix agent服务

    CentOS操作系统部署zabbix agent服务 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查看zabbix的官方手册 1>.点击下载 2>.查看Ubunt ...

  4. 恒大与FF终达成和解!谁赢了,谁输了?

    去年11月结束的中超,广州恒大以63分的积分落后上海上港5分,排在第二名的位置.恒大恒可惜地没有创造史无前例的联赛八连冠,与新的亚洲纪录失之交臂.但相比球场上的"失意",许家印在商 ...

  5. jenkins#配置插件加速

    系统管理 -> 插件管理  -> 高级  -> 升级站点 -> 填写新的url -> 提交. 新的url为:https://mirrors.tuna.tsinghua.e ...

  6. axios和fetch

    前面的vuex提到了异步请求,在vue里异步请求怎么请求呢,很显然jq.ajax是不用了,不是不能用,而是没必要,jq是操作dom的工具,强行用浪费功能,还会加大打包后的体积,而且是没有promise ...

  7. Day6 - B - 采花 HYSBZ - 2743

    萧芸斓是Z国的公主,平时的一大爱好是采花.今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花 .花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于公主采花.公 ...

  8. excel 两列值匹配取另外一列值 INDEX MATCH 函数

    =INDEX($D:$D,MATCH(K68,$C:$C,0))

  9. python Scipy积分运算大全(integrate模块——一重、二重及三重积分)

    python中Scipy模块求取积分的方法: SciPy下实现求函数的积分的函数的基本使用,积分,高等数学里有大量的讲述,基本意思就是求曲线下面积之和. 其中rn可认为是偏差,一般可以忽略不计,wi可 ...

  10. SciKit-Learn 加载数据集

    章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Learn 可视化数据:主成分分析(P ...