B - Piggy-Bank

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
 
非常典型的完全背包以及恰好装满问题。
首先,要实现完全背包,循环背包容量的时候,即从0 到 最大容量,模拟一个矩阵数表也看得出,这样只要背包存得下,即从前一个f[j-v[i]]状态再加当前物品,等该层循环完毕,单种物品已经尽可能多的存在了背包当中。。。这是我对完全背包的理解。
 
然后是恰好装满问题,我一开始想的是,判断f[max]与f[max-1]是否相等,不过感觉略有些虚,好像对也好像不对。。。。然后网上大神给的标解是,将f[0]=0,其他值,如果是求背包最大,则设置为-inf(无穷小),如果是求背包最小,则设置为inf。。。这样想一下也很明晰,唯有f[0+某商品]才真正是背包容量,其他的无穷大和无穷小的状态都是虚的。。。针对本体来说,如果最终f[max]仍旧是无穷大,那说明根本凑不齐恰好装满这种状态。
 
然后还有一点心得是:本题是求背包最小值,我有点定向思维,写多了求最大值的背包,其实求最小值也是一样的写法,我目前的思路就是,将f[0]赋值为0,其他的都赋值为无穷大。然后在遍历过程中,取min值。
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[];
int w[],p[];
int max(int x,int y)
{
if (x>y) return y;
return x;
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int em,fu;
scanf("%d %d",&em,&fu);
int wei=fu-em;
int n;
scanf("%d",&n);
int i,j,k;
for (i=;i<n;i++)
{
scanf("%d %d",&p[i],&w[i]);
}
for (i=;i<=wei;i++) f[i]=1e9;
f[]=;
for (i=;i<n;i++)
{
for (j=;j<=wei;j++) //从小到大遍历背包容量,完全背包
{
if (j-w[i]>=)
{
f[j]=min(f[j],f[j-w[i]]+p[i]);
}
}
}
if (f[wei]==1e9) puts("This is impossible.");//若满足条件,说明根本不能恰好装满。
else
printf("The minimum amount of money in the piggy-bank is %d.\n",f[wei]);
}
return ;
}
 

HDU-1114 完全背包+恰好装满问题的更多相关文章

  1. 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  2. HDU - 1114 Piggy-Bank 完全背包(背包恰好装满)

    Piggy-Bank Before ACM can do anything, a budget must be prepared and the necessary financial support ...

  3. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  4. QDUOJ 分辣条-01背包恰好装满情况

    分辣条 发布时间: 2016年6月26日 20:36   最后更新: 2016年6月26日 20:37   时间限制: 1000ms   内存限制: 128M 描述 “你喝的酸奶是我买的,辣条也是我买 ...

  5. HDU 1114 完全背包+判断能否装满

    题意 给出一个存钱罐里的钱币重量 给出可能的n种钱币重量以及价值 求存钱罐中钱币的最小价值 若不可能另有输出 在裸的完全背包上加了一点东西 即判断这个背包能否被装满 初始化 dp[0]=0 其余的都使 ...

  6. hdu 1114(完全背包)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. Piggy-Bank HDU - 1114 完全背包

    #include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...

  8. 题解报告:NYOJ #311完全背包(恰好装满)

    描述: 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题 ...

  9. ACM_01背包(恰好装满)

    背包2 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有n个重量和价值分别为Wi,Vi的物品,现从这些物品中挑选出总量刚好为 W ...

随机推荐

  1. javaweb框架--自定义标签与freemaker结合

    http://blog.csdn.net/myfmyfmyfmyf/article/details/8960299 很有用但是不不知道怎么说,写个例子,总之方便多了,并且容易管理,重复利用强 1.自定 ...

  2. Java多线程编程之守护线程

    Java的线程分为两种,一个是用户线程,一个是守护线程.守护线程守护的对象就是用户线程,当用户线程结束后,守护它的守护线程也就会结束.二者的本质基本是一样的,唯一区别在于何时结束. 用户线程:直到自己 ...

  3. ElasticSearch入门了解

    什么是Elasticsearch: Elasticsearch,分布式,高性能,高可用,可伸缩的搜索和分析系统 1.什么是搜索? 搜索,就是在任何场景下,找寻你想要的信息,这个时候,会输入一段你要搜索 ...

  4. MySQL学习之SQL基础(一)DML

    DML(data Manipulation language) INSERT DELETE UPDATE SELECT INSERT mysql> desc emp; +----------+- ...

  5. imple-unpack---攻防世界

    拿到题目查壳没有发现.题目已经明确说了,基本上是有壳的,Linux下面看看 应该就是upx的壳了,下载upx进行脱壳,https://sourceforge.net/projects/upx/file ...

  6. 在linux7(centos)中安装python3.7.2

    一般情况下linux上都默认安装了python,检查一下我的版本 没有安装python3,但是目前已经是python3了,所以为了方便,还是要在系统上安装一下比较好. 上面的命令,直接输入python ...

  7. uni app中关于图片的分包加载

    因为在项目中使用了大量的静态资源图片,使得主包体积过大, 而把这些图片全部放到服务器又有点麻烦,就想能不能把图片也分包,但是直接放在分包下的话导致图片资源找不到了, 在社区中看到大佬分享的十分有用,特 ...

  8. Noip2018普及组初赛试题解题报告

    解题思路: 一.单项选择题 (答案:DDDBBAAAABABBBB) 1.除D外,其余均为输入设备. 2.除D外,其余都等于(617)10 ,D选项为(619)10. 3.1MB=1024KB=102 ...

  9. 微信小程序—页面跳转

    问题: 实现页面跳转:index页面通过按钮跳转到next页面 方法: 1.页面index.wxml增加一个按钮 // index.wxml <button bindtap="jump ...

  10. 033.SAP上查看IDOC接口,PI接口查不到的日志记录,可能在IDOC接口日志里面

    01. SAP系统发料之后,数据没有传输到条码系统,同事也没有任何bc01的日志,这是就要考虑是不是在IDOC接口了,输入事务代码WE02或者WE05 02.双击查看内容 03.点开就能看到详细内容了 ...