tf.nn.max_pool(
value,
ksize,
strides,
padding,
data_format='NHWC',
name=None
)
参数:
value:由data_format指定格式的4-D Tensor ([batch_size, height, width, channels])
ksize:具有4个元素的1-D整数Tensor.输入张量的每个维度的窗口大小
strides:具有4个元素的1-D整数Tensor.输入张量的每个维度的滑动窗口的步幅
padding:一个字符串,可以是'VALID'或'SAME'.填充算法
data_format:一个字符串.支持'NHWC','NCHW'和'NCHW_VECT_C'
name:操作的可选名称 返回:
由data_format指定格式的Tensor.最大池输出张量

tf.nn.max_pool 池化的更多相关文章

  1. 【TensorFlow】tf.nn.max_pool实现池化操作

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...

  2. TensorFlow:tf.nn.max_pool实现池化操作

    tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...

  3. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  4. tf.nn的conv2d卷积与max_pool池化

    tf.nn.conv2d(value,filter,strides,[...]) 对于图片来说 value :   形状通常是np.array()类型的4维数组也称tensor(张量),  (batc ...

  5. tf入门-池化函数 tf.nn.max_pool 的介绍

    转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...

  6. CNN之池化层tf.nn.max_pool | tf.nn.avg_pool | tf.reduce_mean | padding的规则解释

    摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.ma ...

  7. TF-池化函数 tf.nn.max_pool 的介绍

    转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...

  8. tf.nn.max_pool

    tf.nn.max_pool(value, ksize, strides, padding, name=None)   参数是四个,和卷积很类似: Args Annotation 第一个参数value ...

  9. tf.nn.conv2d函数和tf.nn.max_pool函数介绍

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...

随机推荐

  1. java虚拟机学习记录(内存划分、垃圾回收、类加载等机制)

    一直以来觉得虚拟机是Java最难的一部分,涉及最底层的原理,学起来难度很大,而且工作中基本上用不到这些原理,所以对这部分“敬而远之”.现如今工作五年了,从Java基础到算法.数据结构.网络.数据库.设 ...

  2. 12.unittest的学习

    unittest学习后的总结,记录各个主要内容

  3. git常用命令学习配详细说明

    原文链接 把当前目录变成Git可以管理的仓库 git init 查看仓库当前的状态 git status 添加新/变动文件 git add <文件名> // 添加某个新文件(目录) git ...

  4. Journal of Proteome Research | Down-Regulation of a Male-Specific H3K4 Demethylase, KDM5D, Impairs Cardiomyocyte Differentiation (男性特有的H3K4脱甲基酶基因(KDM5D)下调会损伤心肌细胞分化) | (解读人:徐宁)

    文献名:Down-Regulation of a Male-Specific H3K4 Demethylase, KDM5D, Impairs Cardiomyocyte Differentiatio ...

  5. 修改imx6ull开机LOGO(一)

    imx6ull启动的时候默认显示uboot自带的开机画面,按照如下步骤修改为我们想要的开机画面,如下: 首先去掉液晶屏右上角的打印信息   修改/drivers/video/cfb_console.c ...

  6. Servlet(五)----Request登录案例

    ##  案例:用户登录 准备工作: 准备Maven  配置pom.xml <?xml version="1.0" encoding="UTF-8"?> ...

  7. [set]Codeforces 830B-Cards Sorting

    Cards Sorting time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  8. Trie树的简单实现

    import java.util.ArrayList; import java.util.TreeMap; import util.FileOperation; public class Trie { ...

  9. 强化学习之七:Visualizing an Agent’s Thoughts and Actions

    本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal t ...

  10. 热点 | github近期热点项目汇总

    本文是近期Github热点项目的汇总,如果你想了解更多优秀的github项目,请关注我们公众号的github系列文章. 推荐 | 7个你最应该知道的机器学习相关github项目 热点 | 六月Gith ...