在 java5 以后,我们接触到了线程原子性操作,也就是在修改时我们只需要保证它的那个瞬间是安全的即可,经过相应的包装后可以再处理对象的并发修改,本文总结一下Atomic系列的类的使用方法,其中包含:

类型 Integer Long
基本类型 AtomicInteger AtomicLong AtomicBoolean
数组类型 AtomicIntegerArray AtomicLongArray AtomicReferenceArray
属性原子修改器 AtomicIntegerFieldUpdater AtomicLongFieldUpdater AtomicReferenceFieldUpdater

1. 基本类型的使用

首先看一下AtomicInteger的使用,AtomicInteger主要是针对整数的修改的,看一下示例代码:

public class AtomicIntegerDemo {

	/**
* 常见的方法列表
* @see AtomicInteger#get() 直接返回值
* @see AtomicInteger#getAndAdd(int) 增加指定的数据,返回变化前的数据
* @see AtomicInteger#getAndDecrement() 减少1,返回减少前的数据
* @see AtomicInteger#getAndIncrement() 增加1,返回增加前的数据
* @see AtomicInteger#getAndSet(int) 设置指定的数据,返回设置前的数据
*
* @see AtomicInteger#addAndGet(int) 增加指定的数据后返回增加后的数据
* @see AtomicInteger#decrementAndGet() 减少1,返回减少后的值
* @see AtomicInteger#incrementAndGet() 增加1,返回增加后的值
* @see AtomicInteger#lazySet(int) 仅仅当get时才会set
*
* @see AtomicInteger#compareAndSet(int, int) 尝试新增后对比,若增加成功则返回true否则返回false
*/
public final static AtomicInteger TEST_INTEGER = new AtomicInteger(1); public static void main(String []args) { for(int i = 0 ; i < 10 ; i++) { //开启10个线程 new Thread() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
int now = TEST_INTEGER.incrementAndGet(); //自增
System.out.println(Thread.currentThread().getName() + " get value : " + now);
}
}.start();
}
}
}

看一下结果:

Thread-3 get value : 4

Thread-7 get value : 5

Thread-9 get value : 9

Thread-4 get value : 6

Thread-0 get value : 3

Thread-1 get value : 8

Thread-5 get value : 11

Thread-8 get value : 7

Thread-2 get value : 10

Thread-6 get value : 2

可以看出,10个线程之间是线程安全的,并没有冲突。也就是说,我们使用原子性操作类去操作基本类型int就可以解决线程安全问题,一个线程在操作的时候,会对其它线程进行排斥,不用我们手动去使用synchronized实现互斥操作了。AtomicLong和AtomicBoolean类似,就不举例子了。

2. 数组类型的使用

下面要开始说Atomic的数组用法,Atomic的数组要求不允许修改长度等,不像集合类那么丰富的操作,不过它可以让数组上每个元素的操作绝对安全的,也就是它细化的力度还是到数组上的元素,做了二次包装,虽然是数组类型的,但是最后还是操作数组中存的数,所以会了上面的基本类型的话,数组类型也很好理解。这里主要看一下AtomicIntegerArray的使用,其它的类似。

public class AtomicIntegerArrayTest {

	/**
* 常见的方法列表
* @see AtomicIntegerArray#addAndGet(int, int) 执行加法,第一个参数为数组的下标,第二个参数为增加的数量,返回增加后的结果
* @see AtomicIntegerArray#compareAndSet(int, int, int) 对比修改,参数1:数组下标,参数2:原始值,参数3,修改目标值,修改成功返回true否则false
* @see AtomicIntegerArray#decrementAndGet(int) 参数为数组下标,将数组对应数字减少1,返回减少后的数据
* @see AtomicIntegerArray#incrementAndGet(int) 参数为数组下标,将数组对应数字增加1,返回增加后的数据
*
* @see AtomicIntegerArray#getAndAdd(int, int) 和addAndGet类似,区别是返回值是变化前的数据
* @see AtomicIntegerArray#getAndDecrement(int) 和decrementAndGet类似,区别是返回变化前的数据
* @see AtomicIntegerArray#getAndIncrement(int) 和incrementAndGet类似,区别是返回变化前的数据
* @see AtomicIntegerArray#getAndSet(int, int) 将对应下标的数字设置为指定值,第二个参数为设置的值,返回是变化前的数据
*/
private final static AtomicIntegerArray ATOMIC_INTEGER_ARRAY = new AtomicIntegerArray(new int[]{1,2,3,4,5,6,7,8,9,10}); public static void main(String []args) throws InterruptedException {
Thread []threads = new Thread[10];
for(int i = 0 ; i < 10 ; i++) {
final int index = i;
final int threadNum = i;
threads[i] = new Thread() {
public void run() {
int result = ATOMIC_INTEGER_ARRAY.addAndGet(index, index + 1);
System.out.println("线程编号为:" + threadNum + " , 对应的原始值为:" + (index + 1) + ",增加后的结果为:" + result);
}
};
threads[i].start();
}
for(Thread thread : threads) {
thread.join();
}
System.out.println("=========================>\n执行已经完成,结果列表:");
for(int i = 0 ; i < ATOMIC_INTEGER_ARRAY.length() ; i++) {
System.out.println(ATOMIC_INTEGER_ARRAY.get(i));
}
}
}

运行结果是给每个数组元素加上相同的值,它们之间互不影响。

3. 作为类属性的使用

当某个数据类型是某个类中的一个属性的时候,然后我们要操作该数据,就需要使用属性原子修改器了,这里还是以Integer为例,即:AtomicIntegerFieldUpdater。示例代码如下:

public class AtomicIntegerFieldUpdaterTest {  

    static class A {
volatile int intValue = 100;
} /**
* 可以直接访问对应的变量,进行修改和处理
* 条件:要在可访问的区域内,如果是private或挎包访问default类型以及非父亲类的protected均无法访问到
* 其次访问对象不能是static类型的变量(因为在计算属性的偏移量的时候无法计算),也不能是final类型的变量(因为根本无法修改),必须是普通的成员变量
*
* 方法(说明上和AtomicInteger几乎一致,唯一的区别是第一个参数需要传入对象的引用)
* @see AtomicIntegerFieldUpdater#addAndGet(Object, int)
* @see AtomicIntegerFieldUpdater#compareAndSet(Object, int, int)
* @see AtomicIntegerFieldUpdater#decrementAndGet(Object)
* @see AtomicIntegerFieldUpdater#incrementAndGet(Object)
*
* @see AtomicIntegerFieldUpdater#getAndAdd(Object, int)
* @see AtomicIntegerFieldUpdater#getAndDecrement(Object)
* @see AtomicIntegerFieldUpdater#getAndIncrement(Object)
* @see AtomicIntegerFieldUpdater#getAndSet(Object, int)
*/
public final static AtomicIntegerFieldUpdater<A> ATOMIC_INTEGER_UPDATER = AtomicIntegerFieldUpdater.newUpdater(A.class, "intValue"); public static void main(String []args) {
final A a = new A();
for(int i = 0 ; i < 10 ; i++) { new Thread() {
public void run() {
if(ATOMIC_INTEGER_UPDATER.compareAndSet(a, 100, 120)) {
System.out.println(Thread.currentThread().getName() + " 对对应的值做了修改!");
}
}
}.start();
}
}
}

可以看到,这里需要将类和类属性传进去才行,传进去后其实跟前面操作Integer没什么不同了,本质都一样的,运行一下,结果只有一个线程能对其进行修改。

线程的原子性操作类的使用就简单总结到这,其他的操作类原理都相似,可以参考 JDK 的文档,可以很容易写出相应的测试代码。

原子性操作类的使用就分享这么多,如有错误之处,欢迎指正,我们一同进步~

Java并发基础10:原子性操作类的使用的更多相关文章

  1. 02.java并发编程之原子性操作

    一.原子性操作 1.ThreadLocal 不同线程操作同一个 ThreadLocal 对象执行各种操作而不会影响其他线程里的值 注意:虽然ThreadLocal很有用,但是它作为一种线程级别的全局变 ...

  2. JAVA多线程提高五:原子性操作类的应用

    当程序更新一个变量时,如果多线程同时更新这个变量,可能得到期望之外的值,比如变量i=1,A线程更新i+1,B线程也更新i+1,经过两个线程操作之后可能i不等于3,而是等于2.因为A和B线程在更新变量i ...

  3. JAVA多线程学习九-原子性操作类的应用

    当程序更新一个变量时,如果多线程同时更新这个变量,可能得到期望之外的值,比如变量i=1,A线程更新i+1,B线程也更新i+1,经过两个线程操作之后可能i不等于3,而是等于2.因为A和B线程在更新变量i ...

  4. 5、探秘JDK5新并发库之原子性操作类

    java.util.concurrent.atomic包里提供了 AtomicBoolean 可以用原子方式更新的 boolean 值. AtomicInteger 可以用原子方式更新的 int 值. ...

  5. 并发库应用之二 & Java原子性操作类应用

    Java5的线程并发库中,提供了一组atomic class来帮助我们简化同步处理.基本工作原理是使用了同步synchronized的方法实现了对一个long, integer, 对象的增.减.赋值( ...

  6. Java 并发基础

    Java 并发基础 标签 : Java基础 线程简述 线程是进程的执行部分,用来完成一定的任务; 线程拥有自己的堆栈,程序计数器和自己的局部变量,但不拥有系统资源, 他与其他线程共享父进程的共享资源及 ...

  7. 【搞定 Java 并发面试】面试最常问的 Java 并发基础常见面试题总结!

    本文为 SnailClimb 的原创,目前已经收录自我开源的 JavaGuide 中(61.5 k Star![Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核心知识.欢迎 Sta ...

  8. java并发基础(五)--- 线程池的使用

    第8章介绍的是线程池的使用,直接进入正题. 一.线程饥饿死锁和饱和策略 1.线程饥饿死锁 在线程池中,如果任务依赖其他任务,那么可能产生死锁.举个极端的例子,在单线程的Executor中,如果一个任务 ...

  9. java并发基础(二)

    <java并发编程实战>终于读完4-7章了,感触很深,但是有些东西还没有吃透,先把已经理解的整理一下.java并发基础(一)是对前3章的总结.这里总结一下第4.5章的东西. 一.java监 ...

随机推荐

  1. optimizing Wi-Fi solution for International School

    https://aweisoft.azurewebsites.net/Knowledge/Cisco/OptimizeWiFi/OptimizeWiFi.aspx Connect me on Link ...

  2. go bufio 、os 包

    程序使用短变量声明创建bufio.Scanner类型的变量input. input := bufio.NewScanner(os.Stdin) 该变量从程序的标准输入中读取内容.每次调用input.S ...

  3. [日志分析]Graylog2进阶之获取Nginx来源IP的地理位置信息

    如果你们觉得graylog只是负责日志收集的一个管理工具,那就too young too naive .日志收集只是graylog的最最基础的用法,graylog有很多实用的数据清洗和处理的进阶用法. ...

  4. 【Python】2.14&2.15学习笔记 运算符与表达式

    太爽了,今天可以尽情熬夜了,明天不上课,可以学一整天\(Python\) 运算符 \(+,-,*,%\)就不说了,说几个和\(c\)不太一样的 除法 print( 5/3 ) 输出了\(1.66666 ...

  5. winform不能循环引用,使用接口传值到界面

    public partial class frmMain : Form, IFormManager { 4 public frmMain() { InitializeComponent(); 8 } ...

  6. 3D游戏中各种空间变换到底是怎么回事

    每一个游戏可以呈现炫丽效果的背后,需要进行一系列的复杂计算,同时也伴随着各种各样的顶点空间变换.渲染游戏的过程可以理解成是把一个个顶点经过层层处理最终转化到屏幕上的过程,本文就旨在说明,顶点是经过了哪 ...

  7. 对tf.nn.softmax的理解

    对tf.nn.softmax的理解 转载自律者自由 最后发布于2018-10-31 16:39:40 阅读数 25096  收藏 展开 Softmax的含义:Softmax简单的说就是把一个N*1的向 ...

  8. Linux常用命令 - top命令详解(重点)

    21篇测试必备的Linux常用命令,每天敲一篇,每次敲三遍,每月一循环,全都可记住!! https://www.cnblogs.com/poloyy/category/1672457.html top ...

  9. Swift 4.0 数组(Array)学习

    定义数组常量(常量只有读操作) let array1: [Int] = [11, 55, 5] let array2 = [11, 55, 5] 定义数组变量 var array: [Int] = [ ...

  10. Magento2-2.3.4 win10安装完magento无法加载静态资源导致无法进入后台登录页面

    后台面无法进入,截图如下