这个题很怪,一开始没仔细读题,写了个简单的分组背包交上去,果不其然WA。

题目分析:

分组背包问题是这样描述的:有K组物品,每组 i 个,费用分别为Ci ,价值为Vi,每组物品是互斥的,只能取一个或者不取(最多取一个),求在一定背包容量V的情况下,能够获得的最大价值。

而这个题是,他每个牌子的鞋最少会买一双,但不会买一个牌子同款的两次。

也就是说如果将每个牌子分成一组,那么在每组里面要至少取一双,所以这更像是在每组里面进行01背包。

普通的分组背包的三层循环是:

for(int k=; k<K; k++)
for(int v=V; v>=; v--)
for(int i=; i<num[k]; i++)
if(v>a[k][i].c)
dp[v] = max(dp[v], dp[v-a[k][i].c] + a[k][i].v);

这三层循环的顺序保证了每一组最多有一个被选中。

所以如果要对每一组进行01背包要将2、3层循环换位置

但这样还不够,想想看,每一组其实是在上一组的基础上进行的01背包,这样才能得到总体的最大值。

每一次更新取得应该是:

max(dp[k][v], dp[k][v-a[k][i].c]+a[k][i].v, dp[k-1][v-a[k][i].c]+a[k][i].v)

  上一组得01背包基础上,和这一组前面01背包的基础上,找到的最大值。

  dp[k][v-a[k][i].c]+a[k][i].v   是这一组前面01背包状态基础上,转移到目前状态

  dp[k-1][v-a[k][i].c]+a[k][i].v  是上一组01背包状态基础上,转移到目前状态

所以这就要注意,这个基础是要能够到达的,在初始化dp数组时要这样:

memset(dp, -, sizeof(dp));
memset(dp[], , sizeof(dp[]));

-1表示不可到达的状态。  这里不明白的话,应该细细体会一下,下面是修改后的三层循环:

for(int k=; k<K; k++)
for(int i=; i<num[k]; i++)
for(int v=V; v>=a[k][i].c; v--)
{
if(dp[k][v-a[k][i].c]!=-) //本组内状态是可以到达的,这是在前面01背包的基础上
dp[k][v] = max(dp[k][v], dp[k][v-a[k][i].c]+a[k][i].v);
if(dp[k-][v-a[k][i].c]!=-) //前组状态是可以到达的,这是在前组01背包的基础上
dp[k][v] = max(dp[k][v], dp[k-][v-a[k][i].c]+a[k][i].v);
}

最后输出时候如果dp[k][m] 也就是我们要求的最终答案,为-1的话,意思是这个状态是不可到达的,那我们就要输出“Impossible”;

下面是AC代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h> int max(int a, int b)
{
return a>b? a:b;
} struct dat
{
int c;
int v;
} data[][]; int main()
{
int n, m, k;
int a,b,c;
int dp[][];
int count[];
while(scanf("%d%d%d", &n, &m, &k)!=-)
{
memset(dp, -, sizeof(dp));
memset(dp[], , sizeof(dp[]));
memset(count, , sizeof(count)); for(int i=; i<n; i++)
{
scanf("%d%d%d", &a, &b, &c);
data[a][count[a]].c = b;
data[a][count[a]++].v = c;
} for(int i=; i<=k; i++)
{
for(int j=; j<count[i]; j++)
for(int v=m; v>=data[i][j].c; v--)
{
if(dp[i][v-data[i][j].c]!=-)
dp[i][v] = max(dp[i][v], dp[i][v-data[i][j].c]+data[i][j].v);
if(dp[i-][v-data[i][j].c]!=-)
dp[i][v] = max(dp[i][v], dp[i-][v-data[i][j].c]+data[i][j].v);
}
}
if(dp[k][m]==-)
printf("Impossible\n");
else
printf("%d\n", dp[k][m]);
}
return ;
}

hdu3033 I love sneakers! 分组背包变形(详解)的更多相关文章

  1. hdu3033 I love sneakers! 分组背包变形

    分组背包要求每一组里面只能选一个,这个题目要求每一组里面至少选一个物品. dp[i, j] 表示前 i 组里面在每组至少放进一个物品的情况下,当花费 j 的时候,所得到的的最大价值.这个状态可以由三个 ...

  2. HDU3033 I love sneakers!———分组背包

    这题的动态转移方程真是妙啊,完美的解决了每一种衣服必须买一件的情况. if(a[x][i-c[x][j].x]!=-1) a[x][i]=max(a[x][i],a[x][i-c[x][j].x]+c ...

  3. python 之re模块(正则表达式) 分组、断言详解

    正则表达式分组.断言详解   提示:阅读本文需要有一定的正则表达式基础. 正则表达式中的断言,作为高级应用出现,倒不是因为它有多难,而是概念比较抽象,不容易理解而已,今天就让小菜通俗的讲解一下. 如果 ...

  4. I love sneakers!(分组背包HDU3033)

    I love sneakers! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 3033 分组背包变形(每种至少一个)

    I love sneakers! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. hdu 3033 I love sneakers! 分组背包

    I love sneakers! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu 3033 I love sneakers!(分组背包+每组至少选一个)

    I love sneakers! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU3033I love sneakers!(分组背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=3033 本题的意思就是说现在有n种牌子的鞋子,每种品牌有一些不同的鞋,每双鞋子都有一个特定的权值,现在要求每种品牌 ...

  9. HD3033I love sneakers!(分组背包+不懂)

    I love sneakers! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. CodeForces 6C(贪心 + 模拟)

    题目链接 思路如下 贪心的思想,⚠️女士优先的策略,当它们吃掉之前的物品所用的时间相同的时候,此时女士先开始 继续吃 题解如下 #include<iostream> using names ...

  2. Lisp-02: 函数

    函数(functions) 在 Lisp 中,函数分两种:有名函数和匿名函数(lambda函数). 有名函数 defun 有名函数的标准定义格式为: (defun <name> (list ...

  3. 老技术新谈,Java应用监控利器JMX(3)

    各位坐稳扶好,我们要开车了.不过在开车之前,我们还是例行回顾一下上期分享的要点. 上期我们深入的聊了聊 JMX,把 JMX 的架构了解了七七八八,最后通过代码实战,解决系列疑问,实现远程动态修改应用参 ...

  4. python爬虫之requests的基础使用

    1.先安装requests库,打开cmd,输入:pip install requests

  5. Golang入门(3):一天学完GO的进阶语法

    摘要 在上一篇文章中,我们聊了聊Golang中的一些基础的语法,如变量的定义.条件语句.循环语句等等.他们和其他语言很相似,我们只需要看一看它们之间的区别,就差不多可以掌握了,所以作者称它们为&quo ...

  6. Linux下修改efi启动项

    Linux下有一个efibootmgr工具可以编辑efi启动项,十分方便,简单介绍如下 直接运行efibootmgr会显示出当前所有efi启动项,每个启动项前都有相应编号, 可以使用efibootmg ...

  7. leetcode【1403. 非递增顺序的最小子序列】(01)

    题目描述: 给你一个数组 nums,请你从中抽取一个子序列,满足该子序列的元素之和 严格 大于未包含在该子序列中的各元素之和. 如果存在多个解决方案,只需返回 长度最小 的子序列.如果仍然有多个解决方 ...

  8. Unity - 旋转方法

    前言 本文梳理了Unity中常用的旋转方法,涉及两大类:Transform.Quaternion. Transform 类 Rotate() 此方法重载多,易理解,在连续动态旋转中较为常用. /* o ...

  9. 插入排序(C语言版)

    #include<iostream>using namespace std;int n;void lan(int a[],int size){ for(int i = 0;i < s ...

  10. NullPointerException的处理新方式,Java14真的太香了

    在Java语言中,处理空指针往往是一件很头疼的事情,一不小心,说不定就搞出个线上Bug,让你的绩效考核拿到3.25.最近新出的Java14,相信大家都有所耳闻,那么今天就来看看,面对NullPoint ...